NRG IV: Dynamical correlators

NRG-1V.1

Goal: computing spectral functions via Lehmann representation using complete basis.

1. Completeness of Anders-Schiller basis [Anders2005], [Anders2006]

D
The combination of all sets of discarded states constructed in (NRG-IIL.5), { | 0 e>£ | =4 .. N i

forms a complete basis in full Hilbert space of length-N chain, known as 'Anders-Schiller (AS) basis':
@(proof follows below)

by definition exact basis

Z_, |€U§<€Ml = 1‘{” d/d tranif-ormanon Z_Z u 27 <I>( el 0
Sy x

®ep
These basis states are approximate eigenstates of Hamiltonian of length-N chain:

ﬁ”lue? = \ilela e)y = \MQ) (2)

Here we made the 'NRG approximation': when acting on states from shell £ apprOX|mate l»l
by ]’:‘ i.e. neglect later-site parts of the Hamiltonian. Justification: they describe fine structure not
relevant for capturing course structure of shell ? . The AS basis thus has following key properties:

» For small ,ﬁ , energy resolution is bad, degeneracy high.

«As A increases, energy resolution becomes finer, degeneracy decreases.

Projectors:

. A% X X LK) Ky K e
Projector onto PL = 2 laeY f«e[ = Jox |11 (13)
sector ¥ of shell { : «e ¢ k1« &;6 e

K and D sectors partition shell into two

el xl'x DY
disjoint sets of orthonormal states, hence Pl, P,,y = S PL )
Refinement of I sector of shell £: pr _ pO p¥ “ < e
' L~ eer U Ve Y Lac (1s)
Iterate until end of chain: = {’b T/SDX«-’:K =
rate unti chain: et ¥ Tpl, 42~ - (3}
e// U
X 0 K D
Hence: Z Pz“ = 2 PU + ?l“ = 21: P e (i
(forany £">¢) et £>4
) K ,hl 0
For £ =4o - Pl F sz + PCD = 2 % (]
L=4,
e Y
=2
£
Unit operator can be expressed as sum over D-projectors of all shells, hence AS basis is c{omplete!
%Kx' P f)“ if Lz [
xy (s /
General projector products: ’(3[ Pl = ) Sx X 'P;f if 1(: A (19}

! 1
sz' SXK it A>g
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fpp -2 to-0b ot of & |.. | ot

i 6 6 6 6
Siwp Lo Cat) Gtr . N
shorthand system environment
C L L, =
by p— L
7
L2 c,ea ""f fo lvf' [,‘I-‘L \

Transform to basis which diagonalizes sites “p to [ o , retaining full (F) spectrum at each step):

= 2 Z ( ¥ [ F ( F @
a & TFIT F ¥ ¥ l l i .- |
¢ 'lnf Lo Lon lose W
Split into discarded and kept states. In latter sector, move one site from environment into system:
D
= 2 Z 4 § F L
* S, % ¢ ¥D®O l | [ C.. [ l
split '(ﬂf lo lp‘r' '{O 2 v
+
< [ {
22 D KKD 6 ]@ I O
& e.z A !
‘lnf ,eo L{-(‘ ﬂoﬂ, v
\§ Y \ rf————‘
larger system smaller environment
Now diagonalize, split again, and iterate:
2 £ K
2 Z £ | \ \ —~ F,D ® ( ‘ \
P on_“ ‘\ T F T X T ( - -
"‘? aoﬂ ﬂo"?’ N
split +
K F K
[ ! ! {
32 WO x
ﬁ e:e 41 ‘\ \ ¥ Tk ( 2 -, ‘
tmp Lf( o+ N
Iterate until the entire chain is diagonal, and declare all states of last iteration as 'discarded":
E Z+ g | { - K
3 \ \ | N K N ) Vl {
\ T f0 g N-t N
D 4
‘ ‘ A\ A
D — —
7 g K
The collection of all terms marked is the resolution of identity in AS basis:

N K |
7,227 —"pwe | | | L |

“w

i
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2. Operator expansions [Weichselbaum2007], [Peters2006] NRG-IV.2

non-tr|V|aI only on sites —¢, ... s

Below we will show that the Hamiltonian and 'IocaI' operators have following structure in AS basis:

-
“213 .\l R
M D E[ll K

He,
1
l
2133
!]

[volvd

D
Hts}b

K
B g

g J II

Hamiltonian is diagonal: General operator: exclude KK to avoid overcounting!

(( 2) F/
~ 22 El e, Kael ~7 z 32 lue>* (B ) Kl @

L X'x
Operators are diagonal in 'environment' states! Hence environment can easily be traced out!

n N
The expression for H V' follows from (IV.1.2). That for a local operator 3 can be found as follows:

A
Suppose 3 isa 'local operator!, living on sites < £, , e.g. on sites |'m1) and o

6cmp Go

A l\fi‘

B ®+®...@+ © + o} o . ®t e
bl G Ok Sei  Beurn O

Start from the local operator's exactly known representation on length- 4 o chain,

B -3 lwed [y, jﬁ"‘e‘ =2 By, “

)‘x C{K S [ X/X

Define operator projections to X'X sector of shell

dk L w « A

T « K‘é—.X(
Lyl \

, |
~ x _
Brey g = T t ,\IU T v @y
r¢ bt k f_py’ 1 { (no hat: matrix elements)

with matrix elements

0 X ¥ > X
{
BY. f = y - )
(@]\I ! o ~ KID(‘

X/ =< <y

ﬁ
N
r
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can be computed iteratively during forward sweep, starting from £ = £,

€ .y
¢ ty (o K 1§ K \pY
Su_('h( + Lft = Kﬂm k) (B[l-llkk p{A[E\ x\ t ®)
/ 6,

1%
only KK enters here! /" € X nfv
<
Refine KK sector iteratively, using Pel (I ") Z tx
+(
~ A a FKKr v A &
K = K o oK _ X X LAY
E [cb.sl< Plo 6 p£° - X')( %M\ E ﬂofl ! 'PINI K fa[‘;,k-l (9>
[ N *kk ,
Iterate to end of chain: = gl« @x‘é ¥ % E 5[l (c2)
Lo X' £ ¢ Ll x'x elx
A A X 9 N Kk , x' F KK v
Full operator: B = Z E[talx = Z z 5[” x - Z Z } , I \ \ (ts)
% la"o x'x L X’)l [} *

Note: matrix elements are always 'shell-diagonal' (computed using same-length chains).

Time-dependent operators

A SN " # kK .
£~ A% = A
B(4) = c‘H g e = 2 2 an]x(é) ()
[ X%
with time-dependent matrix elements, evaluated using NRG approximation (1.2):
et L
X‘ o' ~ Y . A .-(H['t Y x’ o l(Ed' .-Eu ){.

(e 7, = Gote T - [l “)

Important: since we |te;rat|vely refined only KK sector, the time-dependent factor is 'shell-diagonal':
factors with € ¢ (E t £ # 4 do not occur. Using different shells to compute
E,' and E ,would yield them with dlfferent accuracies, which would be inconsistent.

(12, r3) EKKE A

Fourier transform: é(u) jd{‘ e“ﬂ)tg(.() Z Z_ Bn]x(o) s)

¥/ ll" x!' o ’
[B[ﬂ x(w) X = {B[e] Yl « S((«) - (E& - Efu)) (16)
A A
Operator product expansions: B C Proceed iteratively, refining only KK-KK sector:
5 K“ '\K" (”’l) x/ )(""‘x ~ Aot~ k!
Bf“ l(C f!l K 2 L ; “ ?QH - :Z K[QH}\L'C’[CH\X )
XXX X'xx”
Start from ﬂ a,&, and iterate: ((8)
4 A A X” A x! # KkK non o ! # KKK C X
X X - 1
8C = Brax Ciedx = Z- I>7[e]x’cre x 7 Z- 8¢’
X' & x"x'x £ x"x'x Xt
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3. Full density matrix [Weichselbaum2007] NRG-IV.3

NRG approximation [

a N ‘1 -pEL D _ )
/05. F” %E‘eue) ez w %“,e_\ ;ZT_,“—‘—_(_“:'(&]D“[
oD _J
() FE‘
N -
= AD D (% e o
B %:noffcl‘l) ’ [Pfc‘!ol . 8 oc! Z (2

~

A ! A
Sector projections of ﬁ for shell £ , defined as jo,_-e’]‘ . = Pef f") Pfx , are given by:

N
) ~K (IHS F} D A D ~ K (3)
= = =0
provides refinement for rest of chain density matrix is sector-diagonal

Reduced density matrix for length- ﬂ chain is obtained by tracing out environment of all later sites:

A
Lty = Tr [ﬁ[q y] ( Prer’s fm «=°) el
Siteg >4
d nN-£  degeneracy of environment for shell ,e
DD-sector:

1}

—
e D o
f[e] D - ™ T D.P[?J.'D
)

indicates sum over local

D — D
:jn furo )
¢

basis due to trace (no hat: matrix elements)
with matrix elements
43 ; -2
oy N-£ @ cxt -[T¥ gD ] ®)
[f“ iy Dl [/Q mb\ M = ¥, e ey o
D
I
2 “4
D b _FE density matrix of elative weight of
where 2 L = Z é F “ @) D-sector of shell ¢ E_Se::\;orV\gfIQShe” 2
(without environment) to total partition function,
is partition function for D-sector of shell £ with 220 = (
(without environment) e ¢
KK-sector:
A l‘(/) Q q, K
F[e]K - 2 P (3 1 D F[el o
< o T T KIS K <
L
P (¢'In

K& K —X
= ﬁ = Z I 9 (’[l { (&)
@Kul xl>£ Koﬁm 'PM’JB Q\ X Xt i

Startingat { = A/, the KK matrix elements can be computed iteratively via a backward sweep.
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thermal
J, suppression
The weights w’[, , viewed as a function of L , £ A counting

are peaked near /(T , with a width of five to ten shells - suppression

¢ AL
i T
(depending on A ‘ A and 'an‘,f ) zv"l
E‘L ~
Reason: the Boltzmann factors € ~ IS S in partition { — 2
functions yield & & for £ 52 s T or =~ | At
for E,f << T . Hence
4 ~(£-Y2
- n-4 _ _BE, N-2  -fA l-f (L-9f
(2y g¥-L 3P p f =0 _
%=d - ”Z“-i—:'“A : T 0
Z 7 7 e PEx > 2
§ e L>40r ¢
T N-£r
sum over environment of shell [ T yieIdsﬁ e d

Thus, the weight functions ensure in a natural manner that shells whose characteristic energy lies close to
temperature have dominant weight, while avoiding the brutal single-shell approximation 402 = S Lir

Thermal expectation value: Sx" due to trace
. . @.19) L - X
(8% = T[58] =" Z W Pree Bre | (o)
definition shell- £, X"X'X e
representation 1) g";:,

c, operator trace

= Z [ﬁ [2s) « B[1.,] x\ = Z [f[&] X B[zr,,] xl ()

¥ all S|tes /f X 5|tes <0,
X
¥ (2
C \

trace out all sites £ > £,
race out all sites € < £,

X
K
X
| t
(close the zipper)

<

W matrix trace

—_ X X ~ ;
— Zsr: {,[ﬁm] xS Y] i >< jD[&] xk [Bm ‘u' ts)

can be computed using solely shell- Z, matrix elements
(but reduced density matrix requires backward sweep along entire chain)

Note: traces of shell-diagonal operator products simplify to traces of matrix products,

with full density matrix replaced by reduced density matrix.
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4. Spectral functions: full-density-matrix (fdm) NRG NRG-1V.4

[Weichselbaum2007]
AS basis, being complete set of (approximate) energy eigenststate, is suitable for use in Lehmann
representation of spectral function, with the identification floz)g = § |$c)l,>,‘ , M=v, . Ng
(NRG-IL.1) A
RC . A P _
Ay = [# oot T [FEOC] = Trliw &g
i

trace is cyclic

Insert representation of these three operators in complete AS basis:

()

PN —1 o gl o D
TT[Z_ZZ |§, (Bu][u) ;] é&'ﬁ“o?é}; [C[e] t| 3 Z<Z,E ”Xﬁ))e [P[elbbru %«(Q\J @)
‘el XK .k XY £kk

Looks intimidating, but can be simplified by systematically using (NRG-III.5.12) for overlaps.
Simpler approach (leading to same result) uses operator expansion (2.18):

# KKK

A% = T LB pl = 25 TRy €5 |

II'
XX

xll
trace is cycI|c }) X

Perform trace in same way as for thermal expectation value, (3.10): trace over sites ¢ '> £ vields

]
reduced density matrix, trace over sites ¢ ¢ £ yields matrix trace over shell { :

e = KK X -y X'
A% = 2.2 te [B(ﬂ“"\ x! (Cf)fel X ]
b X% ang
# KK 4 ¢ L x! X o
= Z Z Z‘B((] \(X o' S(U -K(?u'—ed )> [C[ﬂ ¥ foJX] o

resolves frequency at scale )~ A~ 2

Each term involves a trace over matrix products involving only a single shell.

Easy to evaluate numerically.

(3)

(s)

E w
To deal with delta functions, use 'binning': = T
partition frequency axis into discrete bins, —
and replace S(w -E ) by bin function: e L) i
Vif Ee L,  EFE— |
3w -
0 otherwise weight per peak weight per bin

Thus assigns energy & to all peaks lying in the same bin.

Finally, broaden using log-Gaussian broadening kernel, (NRG-III.3.4).
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(at particle-hole symmetry, €4 =- U[z

Spectral function of Anderson impurity model
and zero magnetic field, o )

f

¢
/45(‘0) - Ad’ds/_w\ . /44(5/5 (e))

Can be computed using fdm-NRG. Technical issues:

- Include Z-factors to take care of fermionic signs.
- Broaden final result using log-Gaussian broadening kernel (NRG-IIL.3.4).

Result: for [/ << | (eg.=0.1) and T <2« Tx (e.g. = 0), one obtains

T/Tg =0 |

- NRG correctly captures width of central peak

T // around # =0 , the 'Kondo resonance'.

NRG overbroadens the side peaks,
/ which lie at high energies.

A('W‘)/ﬁ(o)
|
|

0.5

—— The true form of side peaks is narrower.

1 _0'.5 (') 05 1 Over-broadening at large frequencies can be
reduced using 'adaptive broadening' technique

w [Lee2016].

T[FAS(C\I :'-°> = 1

<ot d i Dknft is large enough.

Exact result for peak height at T=0:

NRG reproduces this with an error of

With increasing temperature, Kondo resonance broadens and weakens as | approaches and passes T.

T/Tx |

1f T/Tk 1
0 0
0.1 0.1
— 1 1
D
§ 10 2 10
X 100 hod 100
3 . )
?'i/ 0.5 ;z/ 0.5
0 L 0 L . . L "
-1 0.5 0 0.5 1 1072 1071 100 101 102
w u)/TK
Sum rule: we expect (for any temperature): )
—

de 45(“’) = <dt”{5>‘r * <‘AS 0{: >T = <{0(g,0($f3\>_r = (.

-5
Due to use of complete basis, f{dmNRG fulfills this sum rules to machine precision, with error £ ro ‘
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