
NRG-III.1

Thermodynamic observables1.

Thermal expectation values:

[Wilson1975, Sec. IX], [Krishna-murthy1980a, Sec. I.E]

Trace is over a complete set of many-body states,              .   A complete set was not available in

Wilson's formulation of NRG (it was found only in 2005 by Anders & Schiller in 2005, to be discussed

later). However, Wilson argued that dominant contribution comes from states with                 . Reason:   

(NRG-II.4.4)

shell 

He thus proposed to compute the expectation value using only a single shell (single-shell approximation), 

namely the one, say shell          , whose characteristic energy matches the temperature:

hence 

To compute (7) explicitly, express it in terms of rescaled energies and temperature: 

shell 

For                        ,  we have                                        ('thermal suppression')

For                        , we have                                  , but there are much fewer such states than 

states with                , hence their weight in the trace is negligibly small  ('counting suppression')

(will be shown explicitly later)

Wilson's iteration scheme yieldes, for each chain length       , a 'shell' of eigenstates of 

shell 

shell 

Wilson's choice; often the -1 is ommitted

NRG III: Thermal and Dynamical Quantities
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Thermodynamic observables of physical interest [Krishna-murthy1980a]

Spin susceptibility: 

In NRG context:  approximate                       by                          of (9).    

Impurity contribution: 

total system only conduction band, without impurity

Specific heat

Partition function: with free energy 

Entropy:

with 

Specific heat:

expensive numerically

alternatively:

Impurity contribution: 

Wilson ratio:

For Kondo model and symmetric Anderson model: 

(universal number,  independent of       )
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Wilson ratio:

For Kondo model and symmetric Anderson model: 

(universal number,  independent of       )
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Goal: to compute dynamical quantities such as 

NRG-III.2

Let                  be a complete set of many-body eigenstates of H,

Then 

with density matrix 

'Lehmann 
representation'

Spectral sum rule: 

Zero temperature

and partition function 

2. Lehmann representation of spectral functions
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NRG-III.3

NRG gives energy shells, 

but they don't form a complete set, due to truncation. 

eigenenergies on
an absolute scale

Chose shell       for which 

[Sometimes one can average this over several shells.]

Broaden: 

[Weichselbaum2007, supplementary information (Ref. 13)]

Log-Gaussian kernel: 

Plotted on log scale:

Plotted on linear scale:

peak width is set by: 

long tails

long tail generates 

overbroadening
at large 

Rapid fall-off at                    

ensures that when averaging 

over several shells, broadening of 

high-energy shells does not spoil 

resolution obtained from lower-lying shells. 

Nonzero temperature

Typical 'initial state'              has energy  

So we have to average over a range of shells around the one with  

To combine their contributions, interpolation schemes ('patching rules') have been devised  [Bulla2001]:

But this is rather ad hoc, and does not satisfy sum rules precisely.

[Bulla2008, Sec. III.B]3. Single-shell and patching schemes
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Consider a unitary transformation defined on chain of length           , spanned by basis  

Unitarity guarantees resolution of identity on this subspace: 

Transformation of an operator defined on this subspace:

Matrix elements:

with 

If the states            are MPS:

with

shorthand for 
unit matrix

It will be useful below to have a graphical depiction for basis changes. 

NRG-III.4
4. Graphical notation for basis change
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NRG-III.5

Key insight by F. Anders & A. Schiller (AS): discarded states can be used to construct a complete many-

body basis, suitable for use in Lehmann representation. This requires keeping track of 'environmental 

states'. This section describes how to do this, the next section how to construct the complete basis. 

Suppose a short chain of length        has been diagonalized exactly (no truncation):

full

For             , iteratively use kept states as input, add one site at a time, diagonalize, and split again:

product state

Then split its eigenstates into 'discarded' states (D) and 'kept' states (K).

Include environment 

shorthand for 

(according to our ordering convention, state spaces 
are added in opposite order to that of sketch)

Every state              in shell     has same 'environment', the rest of chain, with degeneracy           : 

Combine shell states and environment states into states defined on entire length-N chain:

new site

split

split

[Weichselbaum2007]

At last iteration, declare all states to be 'discarded': 

degeneracy

system    environment

at last iteration, call 

5. MPS notation for discarded/kept states
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Orthogonality of kept and discarded states

'shell-diagonal  X', X :

shorthand

since 

Early D, late X

Rule of thumb:   off-diagonal overlaps are non-zero only for 'early K with late X'

Early K, late X:

Summary: if 

if 

if 

all states 'discarded'
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