NRG II: General RG concepts, fixed-point spectra

1. General RG ideas

[Wilson1975, p.777]

[Wilson1975, p.776]

[Wilson1975, p.778]

Fundamental RG concepts:

» Importance of energy scale separation:

NRG-II.1

[strongly recommended: read Wilson1975 !]

Renormalization group theory is technically more de-
manding than the theory of derivatives or Feynman
diagrams. However, most of the unsolved problems in
physics and theoretical chemistry are of the kind the
renormalization group is intended to solve (other kinds
of problems usually do not remain unsolved for long). It is
likely that there will be a vast extension of the renormal-
ization group over the next decade as the methods become
more clever and powerful ; there are very few areas in either
elementary particle physics, solid state physics, or theoretical
chemistry that are permanently immune to this infection.

The fourth aspect of renormalization group theory is
the construction of nondiagrammatic renormalization group
transformations, which are then solved numerically, usually
using a digital computer. This is the most exciting aspect

of the renormalization group, the part of the theory that

makes 1t possible to solve problems which are unreachable

by Feynman diagrams. The Kondo problem has been solved
by a nondiagrammatic computer method. The renormal-

The - renormalization group approach is designed to
handle fluctuations over many wavelengths. The renormal-
ization group strategy is to divide the full range of wave-
lengths into subranges of manageable proportions and
consider each subrange in sequence. For example, one can
consider separately the ranges of wavelengths 1-2 A, 2-4 A,
4-8 A, etc.

Goal: resolve splittings at smallest scales"! [Wilson1975, p. 812]

 Logarithmic discretization: interpretation -- energy space vs. real space
[Krishna-murthy1980a, p.1007]
¢ RG transformation: [Wilson1975, p. 816]
= integrate out high energies, get renormalized H

= truncate
= rescale
« Fixed points
= general idea

= Kondo model fixed points: - local moment

- strong coupling

= even/odd iterations [Wilson1975, p. 820]
* RG flow - railroad tracks [Wilson1975, p. 809]
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Why logarithmic discretization?
D A '6" D/ T

The occurrence of J de % terms in perturbation theory indicates that 'all energy scales are

. T - . .
equally important' (there is no characteristic energy scale which dominates).

2z i
‘r”{" é _ /4 %5 = A2 independent of £ 1 [Wilson1975, p. 774] (1)
/7
[
So, we must collect contributions from all scales, no matter how small! A>i (Lj./i =2)
*@**) -n
Logarithmic discretization achieves that: all intervals T = [ A , A ] make similar contributions:
-n
A -
[aet = [ £ = bAoA o
- - M'
In A (net) A
e e
- o
Why integrate from high to low energies? [Wilson1975, p. 812] ' !

Consider a general Hamiltonian of the hierarchical form

[1[ = H, + H+ F €5 ¢--..
with (3)

N> WH > T .
Then one should not diagonalize all terms 'at the same time', but instead first, “¢ then U, , then llg

Reason: suppose we have only 95% accuracy for each step, and suppose ” {.L " ~r, I{ Hz[( ~ 0o

If we first diagonalize H, , then we can compute matrix elements < «| H, l p 7 witherror 0.0s
hence with an absolute error of 0.0005 , so energy splittings due to t/; are known with error 5 r4
(0.05 times smaller than " H,, [] ). By contrast, if we diagonalize H. 4—1-/,, together, their levels

are known with an accuracy of 0.0S . Thus the error would sood ( § times larger than Il HI /] ).

Moral: always treat high energies before low energies!

Why map 'star geometry' to 'chain geometry' ?

Star geometry:

Iu iﬁ. I( A
T T ”""\ Ml_-/\’-\ as\—-\ ._—a"" /F
[} ' Yy ' [ ] /
.; ! T L i /‘\‘;_‘\\j ':’—a4z
N T L T T T_ - e A
S Y LY U R GV SR Y Ay — k%
“/ . \\.__ . energy
e Y e AN SN~ . —
| [ - .|1“|.|.||| - | : :
| NN S SO, PETES PN A 2 hole particle
excitations excitations

Chain geometry: g —o—o—o—¢ ® 4
'l"'\P © ! t w /\- "l
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+
The coupling of each interval T.. with impurity 'renormalizes' it, as described by unitary
transformation from old to new basis, = |6 o Q" 6241
‘ IS>I . L41 )l 2& ﬁ

(o f
In star geometry, every new site couples to original impurity site, requiring ( f:’ ds [ )
Lei Lel

to be evaluated. Errors accumulate: inaccuracies of early iteration affect
impurity-bath coupling at later iterations (because impurity itself is renormalized at each step).

In chain geometry, by contrast, every new site couples only to previous site, and these site-to-site
couplings can be computed very accurately (since star-to-chain mapping is a single-particle problem).

What is nature of basis states in star and chain geometries? [Krishna-murthy1980a, p. 1007]

ol e

¥
In star geometry, each 6\ +w state is localized in energy around 1{; n

- e
with energy spread A ( -A ) . In real space, corresponding
wavefunction z(rﬂ( r) ispeakedat v= o , with radial extent

_ small vi
Kn"— 1/(energy spread) - /\A[h/\ ‘)
large w

+

In chain geometry, each "F% state has energy £ L& o ,
- 2

with energy spread /\ Wz , and spatial extent N .

8 off-diagonal elements of chain Hamiltonian
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2. NRG iteration scheme from RG perspective NRG-II.2

[Wilson1975, Sec VIII]; [Krishna-murthy1980a, Sec. III] ¢ ¢ § £ ¢
° \ 3 3 &
bl Lo b b | b d 4L

bodls ransdid 6.0 o o oo

Wilson chain of length N has Hamiltonian ““l’("""\‘a s

4

ﬁ.

HY = B i)+ Z 4 oy S4- Faa b, + ZZ‘»{?? ke, o

/ A=0S 25 ' lns
- Ay S L) = O
Define éf. = 2 , then for large 4 we have: Lﬁ — z(({./l ) = ! (2)
(NRG-1.3.18)
- (-
Therefore, lowest energy splitting of H is (9(/\ -k ) @
N —

coupling between sites N-1 and N

To iteratively resolve this splitting, define a sequence of rescaled Hamiltonians:

1_7”: /\w-%(“i; E.su) W

chosen to make true ground state energy of equal to zero

o~
then lowest energy splittings in spectrum of H | are G() . [Henceforth tildes indicate rescaled quantities. ]

Eqg. (4) implies a recursion relation:

gml _ /\NIZ(HNH_ Egju)

>

&
- N[z le_
w0k 1, = ANV N (fu { he Net W
g = AR -£4 ) « A lﬁ s fana re) - N(e - £ )
- {N S I-/l-l
NN  ~N n t 2 w4
H = /\ H {-SZL” (;Ns S"'Jﬂ,s{"&‘c'3 - SE& ‘ G>
rescale enlarge system set ground-state energy to zero
Symbolic notation: ~ —
gve = TLAY] ®

ﬁ\ denotes RG-transformation (7)

Question: what happens under repeated applications of “T" 2 Answer: system flows to a fixed point!

Fixed point Hamiltonian satisfies TF [I’-‘l'*l = ﬂ* @

2
More precisely: for Wilson chains, 'T does not have fixed points, but T (two RG steps) does:
r~ ~¥
“(HEYy - W (o)

in the sense that the eigenspectrum of H* and matrix elements of -FN remain invariant.
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3. Uncoupled bath Hamiltonian: fixed points NRG-II.3
Key insight by Wilson: fixed points of HKM!,, and HSI"" can be understood
in terms of the fixed points of the free(!)-electron Hamiltonian, ¢
b~ K
1A
~ N-I (N~l-€)/z ~ t AR
H:’ - 22 A lzz (‘Fls {eus 4'[‘") (.\ )
A=o0S

K
The eigenvalues of Ho can be found by diagonalizing a (N+1)x(N+1)-dimensional matrix, with non-
zero matrix elements only just above and below the diagonal:

o 6 -'—ﬂ)/‘l. -
(/(,J )g,eﬂ = (%4/ )I-f.l = /\('\J {JL @)

Particle-hole symmetry implies that eigenvalues come in degenerate pairs, * VLJ . They are given by

even: 0. s
For N4.(:{ ‘7J . j: l,23 -, L(NJ-J
odd: Je so L5 ) LN )
T 2 - (= 1uy -, 2
As N increases, they approach limiting values:
‘s )
even: 1 Iarge/\/> 7:” J;’ AJ- (
For Neo = { ,_& N . o i ()
odd: : large ~ ! ~
LU 4
A~
Not surprising, since H,_,, is rescaled version of a discretized Hamiltonian with diagonal elements
+ AL
gte =~ =/ . Concretely, for /\ = 2.5, the fixed-point values are: [Krishna-murthy1980a]
(& 2 B3 4
n: 0.746 856, 2.493206, 6.249995, (2.5)°, (2.5)4, ..., (2.5, ..., (N +1) even ; (3.4)
m,: 1.520483, 3.952550, 9.882118, (2.5)72, (2.5)%2, .. ., (2.5¢712, 0, (N +1) odd ; (3.5
Spectrum for N+1 = even
~ ~ g—(b]"') 4 }
Diagonalized form of l-[: is ]-)N — Z 2 ( . 4. £ KB (s)
ST o s WEd e
7; — o
Here 3+s describes particle-like excitation: adding particle with energy + l»l J
: T — @5
and L \(s describes hole-like excitation: removing particle with energy —‘l J .
&
13 — 62
The many-body spectrum consists of combinations of these excitations: ¥ .
W — e
) 'E-_ 1 2y zq o cv ‘!_‘L_ Yot B ’-:%"7_
— - — e -
= E = e e e = == = t
o o9 oo - o ¢ oo Tt - e
*9 o9 o =0 oo oo o9 O -9 13
o o9 S -0~ P - oo O - '7,7‘ e
ti

At the fixed point, each V' i takes its fixed-point value 't?‘ (depicted here /)\/l
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1 v
/\/'

. . . . . _ . ig .
At the fixed point, each Vl.l takes its fixed-point value 1\] (depicted here ') _1;_,_

. . 2 £
The lowest-lying excitations at fixed-point spectrum of 'even fixed point' of T , say F/o

A
‘l|+;l7. 3 = 4y
—_— 3 4 - 2x2
2 >.‘ b =2+ 2x2 U’)
z; 4 = 2x2 ﬂ’,\ﬂ\%(‘f‘,&\
° |

energy ) A degeneracy

Spectrum for N+1 = odd

(o]

g +N 4
Diagonalized form of (—(: is HY = Z%, + 9. 4, v b L
iagonaliz r i 1 josjos"' jL;, g "LJ (3353‘]5“ Je JJ @)

The only (but important) difference to N+1 = even is the occurrence of ‘;‘Lt — G 534/.,_
a zero-energy level: {{v = o . All four ways of filling it (empty; spin-
up; spin-down; double-occupied) yield the same energy. Hence every ',1: — 994
many-particle excitation is four-fold degenerate.

'31”: 2.9

© 'S 6 o 7_( F"zl ﬂ‘il F‘zl N"if___ 1.5

.
T
— — B
- A - o
- — o - 9 9 ——
-3 -0 g o0 O 09 COIJ O
~ ¥
i P

At the fixed point, each Vl.( takes its fixed-point value ';i j‘ (depicted here ()\’

z N,
The lowest-lying excitations at fixed-point spectrum of 'odd fixed point' of T , say H :‘
?ﬁ'fi:’f gy = 32

PR ;i,y 4o = 1A

_— q,:;* Lt = lb
2 7‘ 6 -k = 7_lf ('%)
¥
Z' b-¢v =10

— D |- ¢ = ¢

energy 4 A degeneracy
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4. Kondo model: fixed points and RG flow  (without magnetic field, L =0) NRG-II.4

[Wilson1975, Section VIII]

s L ss'
c/? F
Rescaled Hamiltonian: g = A + 3 S4-Se + _»ﬂ_@[—/‘> 6)

The Kondo model has two fixed points, corresponding to J = o and T = o0

(i) Free 'local moment' (LM) fixed point (J = 0 )

NN _
HK%(T=03 = C?P —e—s . 1o H, ()

Has the same spectrum as }-IOM , with doubled degeneracy (due to two impurity states 1t , ¥ )

. . «
For N :[ even: (3.6)x2 HLm' o (), 1 (3, zq".’ () svlf(v\ ' -z*,‘(,,,) 5)

odd:K(B.B)xz, alLfc" ° (g), T: Go, “""L." (he), 73 () 3'{7(51) (3]
[Egs. from NRG-IL.3]

(i) Strong-coupling (SC) fixed point ( 3 = 2@ )

2 (1L -yt
‘[‘4’0 £ ( ) ﬁ,v—:
= = =y » g g s— — r—y—o—¢ =
torng, (T 003 (C},,,;D {2 IN] . 2 N e
5:‘«7&(
To minimize effect of exchange coupling, all low-energy states have £ SJ . 56 ) =0 )

+ { _
i.e. impurity and site 0 form a singlet. Thus < ,f”_[“ r _F(‘_[,‘bD = o , since hopping to or
from site 0 would break the singlet! Hence:

~¥ ~x a¥ ~
He = H H = H
¢, even o, seld s¢, odd ©

/ ) )

s/

even: (3.8) ).l:c.‘ o (y), 71)(' (16), 1'71,* (“f)' "*i’:(u)/ 33’1)" (1), @)

~ *
odd:ﬁ(3.6) Het o@), 1‘(‘ Gy , 2 @), 31'*("\'7:(") o)
[Egs. from NRG-IL.3]

For N :1
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What happens for general coupling J ?

The Iow -energy spectrum of H (7<< |) evolves (‘flows") with M flowing from

UL” Preg t—[scmﬁﬁem-ﬁ%w

(T ") et (7 —w)
Wilson's railroad analogy [Wilson1975, p.809]

The basic results of the Kondo calculation can be sum-
marized in a geographical allegory. The sequence of Hamil-
tonians corresponding to adding successive layers of the
onion to the impurity will be represented by a railroad
track. The length of track from the beginning to the nth
tie represents the Hamiltonian containing »# conduction
band single electron states (that is, the nth Hamiltonian
contains n particle creation and destruction operators).
There is a separate railroad track for each different strength,
of coupling to the impurity. The approximate numerical
solution of this sequence of Hamiltonians is represented
by a railroad car which travels down the track. Solving
the nth Hamiltonian corresponds to having the railroad
car at the nth tie on the track. The set of energy levels
actually computed corresponds to the length of track
covered by the railroad car; as the car moves down the
track (i.e., as » increases) it covers a smaller and smaller
fraction of the total track up to the nth tie.

FI1G. 14. Railroad track analogy for the
Kondo calculation. Different tracks corre-
spond to different, initial values of J. A
track from the top of the figure to the nth
tie corresponds to the Kondo Hamiltonian
with » electron states kept. The railroad cars
illustrate the subset of energy levels actually
kept in the numerical calculations.

<y

T

Il!ll_lllll:‘!l!:E::E:!:::
—L

T
INE

corrasponding car
on J =0 track

Kondo model: J = 0.11, A = 2, SU(2)charge® SU(2)spin Symmetry
- -multiplet degeneracy
Even iterations \/‘/‘;, state degeneracy
2.3 —a¢eyy (1€, 5]
o [005](2)"
o ) 624) | ----[05 0](2)
il Rt St il s~ E R S M [0.5 1](6)
3 -1 10.5] ( 6)
T 1 4(16) 4 ——[ 0 1.5] (4)
3 - [15 0](4)
x, 2B [ 11.5](12)
h=o A
O q d |terat|ons degeneracies match Egs. (4.9) aDd (4.10)
> 4 —[0 0] (1)
<2 ----[0.5 0.5] (4)
s B
32 —[1 110
S --[0.51.5] (8)
L S S ./ IR [1.5 0.5] (8)
“, “[0 2](5)
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5. SI Anderson model: fixed points and RG flow (no magnetic field, 4 = o ) NRG-IIL.5

_ ($4 = -ur2)
[Krishna-murthy1980a, Sec. III]
T dde + U T gl s b
Hﬂﬂ-»{ = < A Rgg + V\Afy\d(, + -_E-;/ - S Tog J-CLC, \ + N )
Free-orbital (FO) fixed point
¥ W=P= &l =0 , impurity is decoupled from bath @
and all four impurity states are degenerate. 7 2 W

degeneracy = ¢
Fixed-point Hamiltonians:

& ¥
HFO:(M&: 1" ® Hol & ¢l
oud e

Local moment (LM) fixed point

-3 N
degeneracy =2

f < -0 ad MNz<c o)
impurity contains single electron behaving as a 7
local moment, with two degenerate spin states.

Fixed-point Hamiltonians:

% ﬁ*
s RO .

Strong-coupling (SC) fixed point

For | — =  atfixed U,
site zero couple so strongly to impurity that it decouples from bath, changing its parity.

Fixed-point Hamiltonians:

%
H =
scl‘\f‘\—\

cud

. dd ()
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RG flow for [« < A (for N+1=even)

[Krishna-murthy1980a]
Pec
v v
S f‘) |15 2I5 3|5 4I5 5l5 N (tl)dd) I
FIG. 5. Low-lying energy levels of Hy as a function of
odd Nfor U/D=1073, U/7T'=12.66, and A=2.5. On the
Ty * H* left-hand vertical scale are the lowest-lying free-electron
o em s fixed-point levels for N odd, while on the right-hand side
) are the equivalent levels for N even. The following fixed-

point regimes obtain: free orbital 5§ < N < 15, local moment
23 <N <51, strong coupling 61 < N.

¥ 7] £ H ¥
The fact that the level structures of Hro , 7im and se show up as regions of near-stationarity,
proves numerically that these are fixed points! Crossover from even-type levels to odd-type levels
proves screening, i.e. singlet-formation between impurity and site 0.

RG flow for [ 2 U (for N+1=even) E 0cl S0
4
[Krishna-murthy1980a] 37,
N:o e
i , ot
7
‘ -3,
' ) ,\
_znff UN
_.77:"
J o~
= | 0 0
M ‘A.{8L (_,,'x H* 1 1 L 1 L
Fo < 5 15 25 35 N(odd)

FIG. 6. Low-lying energy levels of Hy as a function of
odd Nfor U/D=1073, U/7T'=1.013, and A=2.5. There is
direct transition between the free-orbital and strong-coupling
regimes without passing through the local-moment regime.

No local moment forms, since there is no regime where {nd > = . However, if [ = -
have <. d% £ F e ite 0 again d | flow is agai d Hy  HE
we have s fos <. ) = ,sosite 0 again decouples, so flow is again toward H., = s, .
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