Tangent Space Methods TS.1

Basic idea: if a small change in an MPS is to be computed (e.g. during variational optimization
or time-evolution with a small time step), this change lives in the 'tangent space' of the manifold
defined by the MPS. Thus, construct a projector onto the tangent space, and implement gauge
fixing conditions to remove redundancy due to gauge degrees of freedom. [Haegeman2011]

FIG. 1. A sketch of the manifold M = M ps (wire frame)
embedded in state space. The tangent plane Ty M to M (rotated
gray square) in a uMPS | (A)) (black dot) is spanned by
generally nonorthogonal coordinate axes |d, ¢(A)) and |9,(A))
(dotted lines). The direction f[-}]x!;[A)} of time evolution (arrow
with solid head) is best approximated by its orthogonal projec-
tion into the tangent plane (arrow with open head). The optimal
path [i(A(1))) (gray curve) follows the vector field generated by
these orthogonally projected vectors throughout M.

This very fundamental and general idea has been elaborated in a series of publications.
[Haegeman2013] Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry.
(For a gentle introduction to diff. geometry, see Altland & von Delft, chapters V4, V5.)

[Haegeman2016] Unifying time evolution and optimization within tangent space approach.
[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).

[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.

This lecture follows [Haegeman2016], formulated for finite MPS with open boundary conditions.

1. MPS and canonical forms (reminder)

Consider N-site MPS with open boundary conditions:
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Gauge freedom: l’lffnﬂ is unchanged under 'gauge transformation' on bond indices:
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Note: I-HI and ™M are vector spaces, but MHPS is not, since sum of two MPS with same
bond dimensions in general is an MPS with larger bond dimensions. Mﬂps is a differential

manifold, since it depends smoothly on the tensors in M .

Gauge freedom can be exploited to bring MPS into left-, right-, bond- or site-canonical form:

Left-canonical: l'l{»[MD = %4%—;—’—;—'—; with @E =f )

ﬂ‘ﬂt- = d»iﬁaoqak 'o‘ﬂm

Right-canoncial: | %y} = %‘é_ﬁ&%‘_} with ::D = 1 (s)

Gauge can be fixed uniquely by requiring T;s &6"' =1 and 3’“6 RS = p‘,‘kij. ¢ Bm
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Gauge can be fixed uniquely by requiring l‘]t- As -

. . L
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Here |b(>£'_ \ and lﬁ)ﬁi are orthonormal basis for subspaces representing left- and right parts of chain.

Hamiltonian matrix elements: o g P
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TS.2

2. Tangent space

a

Time-dependent Schrédinger equation: - ﬁ% (B(t)> = H lyw) 0]

N
General solution is (t-dependent) vector in full many-body Hilbert space, H , of dimension d, .

Goal: find (approximate) solution as (t-dependent) point in space of MPS with tensors of specified dimensions:

—_—

(yinw)) = ll'\m (Dl \ F:‘m(l) : | Mf,,l](é) - \/VL s o
d - % M, Age1 f"m Meesg Mow| .
Then 2 1%[nw}> P s e s e e A Ky [.4])Mu) @)
Here we have introduced the general notation
N .
‘Q[—\—]Z/\ - LZ,( ‘l"m I ﬁuill T€e1 ”‘tua | M‘fﬂl = Dﬁ’ff’ﬂ\) T4
shorthand: | = (Tm, v, Tn) e M with composite index | = (¢, 6 £

For a given set of tensors M & [M] , specifying a given MPS | 4,{1\) e M pps, 1+ the space of all

states | §[T] >H with T€WM , is a vector space (since ]@{T\> is linear in T ). It is called
the 'tangent space’, “ , associated with the 'base point' \q(m)) in the manifold Mﬁl’s .

V()
directions & Note that I _ [m§C MHPS < H.
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tdirection
along fiber ( (")>

/ - M,

[Haegeman2014, Fig. 2]

Remark: the gauge freedom available for describing l"-[*EM'D implies a related gauge freedom

available for constructing its tangent space. We obtain a unique construction via the following criteria:

orlhf .
(i) We pick a representative M along each fiber (fix gauge for l'q,[pl})) , €.g. by

picking one of the canonical forms.

(i) Changes of ™ pointing ‘along an orbit' amount to gauge transformations and do not change
(el . . _
]q,[m]) . To construct tangent space ““4’ wmS we consider only T's describing changes of M
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lq,[m]j . To construct tangent space T‘—.ll' m we consider only T 's describing changes of M
orthogonal to such directions.

(iii) Since time evolution is unitary (norm-preserving), {3{1) \'1(,(4[) S = | ,weconsideronly T 's

describing changes of M producing tangent vectors orthogonal to | Y[HM ]7 itself.

AN
We denote the vector space of | 's satisfying these conditions by -“’H

L . . . . 1
Theneach T < TH uniquely specifies a corresponding tangent vector \&[TDM in Tmm) ,
the subset of tangent space orthogonal to ‘\',['q)> (w.r.t. scalar product in Hilbert space {| ):

BMIein) <o ¢ TeTy ©

L
According to (3) and (iii), left-hand side of Schrédinger equation, - % \‘t\/[i)) ,isin ‘?Z"D .
1 2
However, the right side, H ‘1{/(4)7 , is not. In fact, action of H  in general produces MPS with
larger bond dimensions. Our decision to solve time evolution within "/V(nl’s of specified dimension

thus inevitably involves an approximation. The best we can then do is to project H ‘1%({)7 into

W
orthogonal tangent space T, , using a projector ? 4 , and write Schrodinger eq. as
vy Ty tmierdd
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To implement this idea explicitly, we need explicit construction of the projector P .

v odlegester e ekl (;.Mx:,:‘.,(,,' (TD(/P\
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3. Tangent space projector TS.3

N ~
General form of tangent vector: Z M, ”fc-ll Tte] Mg Mm} 0
= T T 1 1T VvV T 1

Gauge freedom can be used to bring £ -th summand into site-canonical form w.r.t. to site ¢ :

N
- An Afe-1] Tfe) B (4 B )
2L, Z, T Y Y 1 v 7 T @

There is still gauge freedom left: | E[‘ﬂ )M does not change under the replacement

Ta = T = T e Y g8y ~Aglio Y= Ty=0. 0

a4t <o ptir +va - av) =0
with Y[ﬂ an arbitrary matrix of dimensions Dl"bc

Check: extra terms yield ( %‘ An Ate-1] Ye-o @m B (e4q B )
“1 >

a T3 e ¥ T T
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This freedom can be exploited to impose the following 'left gauge fixing condition' (LGFC) on Tu] :
T

£ >
A[Q}s T}e] = 0 ¥ 0= . N-l [ = 1% Y]

At
[1f T does not satify LGFC, replace itby T , with X chosen such that ’Al: does satisfy LGFC.]

The LGFC has two convenient properties. First, it ensures orthogonality of tangent vector to its base point
vector:

A S . ﬂ . & B L
Cd '\ Cd Ld / ~ 4
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as required by property (iii) of Sec. TS.2. Second, it enables construction of an orthonormal basis for the

=t

()

orthogonal tangent space "ﬂ_ . To this end, we adopt a more convenient parameterization of Tm .

|4 u])
D D
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D D
Parametrization of Tfﬂ . d

D

Recall that each ﬂfel was obtained by 'thin' SVD of some f’l:;] . Let us consider corresponding 'fat' SVD:

ms PR & - .+
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(

Recall that each ﬂf’e-l was obtained by 'thin' SVD of some H:e] . Let us consider corresponding 'fat' SVD:
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A" s built from the first T)columns of the D'l x Dl unitary matrix [~ : o
Let ﬁ’s be similarly built from its remaining 'D" = D(o(— D columns: D‘ ‘e 'D"
o

Since (/( is unitary, the columns of ] and ﬂl form orthonormal bases of mutually orthogonal subspaces:

bl

te ' Iy ,
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Exploiting orthogonality of q and H , we can parametrize | in following factorized form

I-3 .
& _ /G’z { T 3 n x

= ° = - > —< |
@ - P ta ’1; 0 ° i Yo D uh

where 3(“] is an arbitrary (D‘J-DS x D matrix, and (9,far right) ensures that LGFC (5) holds.

After left-gauge-fixing, tangent vectors have the following general form, parametrized by X

), (n) N
A 4(:3 Xtu Bug B _ S
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Here the set of states l@_ f,'(lbng w?ﬂﬁA—{‘i'—:?(—‘}; P yuﬂ] I" Pﬂ (13)
form an orthonormal basis for the orthogonal tangent space '_h_' - , since
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[(9) ensures that terms with Z':ﬁ £ vanish, and for the L=y terms, we can close zipper from left and right.]

Tangent space projector

Tangent space basis yields desired projector onto orthogonal tangent space Ii

an
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This is our final expresswn for desired tangent space projector. It is built fully from known tensors!



4. Time evolution KS.4

Schrédinger equation now takes the form

~¢ d = P I:Ill (e)
at W[MM]) —'T(J:frncm? L))
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Can be integrated one site at a time:
C[u (¢ ) = Crel H) forward in time
/\m (b ) = /\ (el (é] backward in time
Forward sweep, starting from Cm(i\ E(z]l’c) e &(”] (¢)

N
C(ﬂ(@ B((-HJH;) ’$ C(q]“? ) &{(HIH/)

—t—
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Ke1
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Al (£42) etc.
until we reach last site, and MPS described by AM(JC +) ... ﬂ[u-.] (++) C{”] () (13)
. l"[ o1 H[h]
2. Turn around: Cant) A Cra(t+7) o le [+21) qn

3. Backward sweep, for { = A}—-I, .., |, starting from A[.\(‘c £7) --.. ﬂlﬂ»d ($41) C{u] (¢ 1)



3. Backward sweep, for f = N/, ._. {, starting from “q[,\(jc £T) .-, ﬂ[u»d (te1) Cfu] (£+21)
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until we reach first site, and MPS described by CM(L +21 ) B[z] ({-M‘z)-. . &[o) (¢ ¥2T)

The scheme described above involves ‘one-site updates'. This has the drawback (as in one-site DMRG),
that it is not possible to dynamically exploring different symmetry sectors. To overcome this drawback,
a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!
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