Basic idea: if a small change in an MPS is to be computed (e.g. during variational optimization or time-evolution with a small time step), this change lives in the 'tangent space' of the manifold defined by the MPS. Thus, construct a projector onto the tangent space, and implement gauge fixing conditions to remove redundancy due to gauge degrees of freedom. [Haegeman2011]

FIG. 1. A sketch of the manifold $\mathcal{M}=\mathcal{M}_{\mathrm{uMPS}}$ (wire frame) embedded in state space. The tangent plane $T_{A} \mathcal{M}$ to \mathcal{M} (rotated gray square) in a uMPS $|\psi(A)\rangle$ (black dot) is spanned by generally nonorthogonal coordinate axes $\left|\partial_{1} \psi(A)\right\rangle$ and $\left|\partial_{2}(A)\right\rangle$ (dotted lines). The direction $i \hat{H}|\psi(A)\rangle$ of time evolution (arrow with solid head) is best approximated by its orthogonal projection into the tangent plane (arrow with open head). The optimal path $|\psi(A(t))\rangle$ (gray curve) follows the vector field generated by these orthogonally projected vectors throughout \mathcal{M}.

This very fundamental and general idea has been elaborated in a series of publications. [Haegeman2013] Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry. (For a gentle introduction to diff. geometry, see Altland \& von Delft, chapters V4, V5.)
[Haegeman2016] Unifying time evolution and optimization within tangent space approach.
[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).
[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.
This lecture follows [Haegeman2016], formulated for finite MPS with open boundary conditions.

1. MPS and canonical forms (reminder)

Consider N-site MPS with open boundary conditions:

$$
\begin{equation*}
|\psi[M]\rangle=\left|\vec{\sigma}_{N}\right\rangle M_{[1]}^{\sigma_{1}} M_{[2]}^{\sigma_{2}} \ldots M_{[N]}^{\sigma_{N}} \tag{1}
\end{equation*}
$$

where $M_{[l]}^{\sigma_{l}}$ is matrix with elements $M_{[l]}^{\alpha \sigma_{l}}$, of dimension $D_{l-1} \times D_{l}$, with $D_{0}=D_{N}=1$ shorthand: $M \equiv\left(M_{\{1\}}, \ldots, M_{\{N\}}\right) \in \mathbb{M}$ space of tensors with specified dimensions

Gauge freedom: $|\psi[M]\rangle$ is unchanged under 'gauge transformation' on bond indices:

$$
\begin{align*}
& M_{[l]}^{\sigma_{l}} \mapsto \tilde{M}_{[l]}^{\sigma_{l}} \equiv g_{[l-1]}^{-1} M_{[l]}^{\sigma_{l}} g_{[l]}, \quad g_{[0]}=g_{[N]}=1 \tag{2}
\end{align*}
$$

with $G_{[\ell]} \in \zeta\left(\left(D_{l}, \mathbb{C}\right)\right.$ group of general complex linear transformation in D_{ℓ} dimensions
space of tensors of specified dimensions
'orbit' of tensors specifying same state

Note: $\mathbb{H V}$ and \mathbb{M} are vector spaces, but $M_{\text {MRS }}$ is not, since sum of two MPS with same bond dimensions in general is an MPS with larger bond dimensions. $\mathcal{M}_{\text {GPS }}$ is a differential manifold, since it depends smoothly on the tensors in \mathbb{M}.

Gauge freedom can be exploited to bring MPS into left-, right-, bond- or site-canonical form:

Left-canonical: $\mid \psi(M])=\stackrel{A}{A} \xrightarrow[A]{A} A_{2}^{A} \rightarrow A$
Gauge can be fixed uniquely by requiring $\quad A_{\sigma}^{+} A^{\sigma}=1 \quad$ and $\quad A^{\sigma} A_{\sigma}^{\dagger}=\operatorname{dinganal} \quad \forall A_{\{l\}}$

Gauge can be fixed uniquely by requiring $B^{\sigma} B_{\sigma}^{+}=\mathbb{1}$ and $B_{\sigma}^{+} B^{\sigma}=$ diagound. $\forall B_{[b]}$

Here $|\alpha\rangle_{l-1}^{L}$ and $|\beta\rangle_{l+1}^{R}$ are orthonormal basis for subspaces representing left- and right parts of chain.
Hamiltonian matrix elements:
${ }_{\ell-1}^{L} \alpha^{\prime}\left|<\sigma_{l}^{\prime}\right|_{l=1}^{R} \beta_{1}^{\prime}$
$\left.\hat{H}|\beta\rangle_{l+1}^{R}\left|\sigma_{l}\right\rangle \mid \alpha\right)_{l-1}^{L}=$

$$
\begin{equation*}
\Lambda_{l-1}, B_{l(3)} \tag{7}
\end{equation*}
$$

Bond-canonical:
related to site-canonical form by

$$
c_{[l]}=A_{[l]} \Lambda_{[l]}=\Lambda_{[l-1]} B_{[l]}
$$

Hamiltonian matrix elements:
$\left.{ }_{\ell}^{L}\left\langle\left.\alpha^{\prime}\right|^{R}\left\langle\beta^{\prime}\right| \hat{H} \mid \beta\right\rangle_{l+1}^{R} \mid \alpha\right)_{l}^{L}=$

Time-dependent Schrödinger equation: $-i \frac{d}{d t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$
General solution is (t-dependent) vector in full many-body Hilbert space, $H \mathbb{H}$, of dimension d^{N}.
Goal: find (approximate) solution as (t-dependent) point in space of MPS with tensors of specified dimensions:

$$
\begin{equation*}
\left.|\psi[M(t)]\rangle=\frac{M_{(1)}(t)}{1|1|}|1|\left|M_{[l e]}(t)\right|(t) \right\rvert\, M_{\text {MPs }} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left.\frac{d}{d t}|\psi[M(t)]\rangle=\sum_{l=1}^{N} \frac{M_{[l]}}{1}\left|\frac{M_{[l-1]}}{} \dot{M}_{[l]} M_{[l+1]}\right| M_{[N]}| | \Phi[\dot{M}]\right\rangle_{M(t)} \tag{3}
\end{equation*}
$$

Here we have introduced the general notation

$$
\begin{align*}
& \text { shorthand: } T \equiv\left(T_{\{1\}}, \ldots, T_{\{N\}}\right) \in \mathbb{M} \quad \text { with composite index } j=(\ell, \alpha, \sigma, \beta) \tag{4}
\end{align*}
$$

For a given set of tensors $M \in \mathbb{M}$, specifying a given MPS $|\psi[M]\rangle \in \mathcal{M}_{\text {MPS }}$, the space of all states $|\Phi[T]\rangle_{M}$ with $T \in \mathbb{M}$, is a vector space (since $|\Phi[T]\rangle$ is linear in T). It is called the 'tangent space', $\prod_{|\psi| m| \rangle}$, associated with the 'base point' $|\psi(m)\rangle$ in the manifold $M_{\text {MPS }}$.

Remark: the gauge freedom available for describing $|\psi[m]\rangle$ implies a related gauge freedom available for constructing its tangent space. We obtain a unique construction via the following criteria:
orlit.
(i) We pick a representative M along each fiber (fix gauge for $\langle\psi[M]\rangle$), e.g. by picking one of the canonical forms.
(ii) Changes of M pointing 'along an orbit' amount to gauge transformations and do not change $|\psi[\mathrm{M}]\rangle$. To construct tangent space $\left.\mathbb{J}_{\mid \psi[M]}\right\rangle$, we consider only T 's describing changes of M
 $|\psi[\mathrm{M}]\rangle$. To construct tangent space $\mathbb{\pi}_{|\psi[m]\rangle}$, we consider only T 's describing changes of M orthogonal to such directions.
(iii) Since time evolution is unitary (norm-preserving), $\langle\psi(t) \mid \psi(t)\rangle=1$, we consider only T 's describing changes of M producing tangent vectors orthogonal to $|\psi[M]\rangle$ itself.

We denote the vector space of T 's satisfying these conditions by $\mathbb{\pi}_{M}^{1}$.
Then each $T \in \pi_{M}^{\perp}$ uniquely specifies a corresponding tangent vector $|\Phi[J]\rangle_{M}$ in $\pi_{|\psi[M]\rangle}^{\perp}$, the subset of tangent space orthogonal to $|\psi[M]\rangle$ (w.r.t. scalar product in Hilbert space $\mathbb{H} \|$):

$$
\begin{equation*}
\left\langle\Phi[T]_{M} \mid \Psi[M]\right\rangle=0 \quad \forall \quad T \in \pi_{M}^{1} \tag{5}
\end{equation*}
$$

According to (3) and (iii), left-hand side of Schrödinger equation, $-i \frac{d}{d t}|\psi(t)\rangle$, is in $\mathbb{T}_{|\psi[M]\rangle} \frac{1}{}$. However, the right side, $\hat{H}|\psi(t)\rangle$, is not. In fact, action of \hat{H} in general produces MPS with larger bond dimensions. Our decision to solve time evolution within $M_{\text {mp }}$ of specified dimension thus inevitably involves an approximation. The best we can then do is to project $\hat{H}|\psi(t)\rangle$ into orthogonal tangent space $\pi_{|\psi[\mu]\rangle}^{\perp}$, using a projector $\hat{P}_{\pi_{\mid \psi[m(t)])}^{\perp}}$, and write Schrödinger eq. as

$$
\begin{equation*}
-i \frac{d}{d t}|\psi[M(t)]\rangle=\hat{P}_{\pi \mid \psi_{|\psi[M(t)]\rangle}^{\perp}} \hat{H}|\psi[M(t)]\rangle \tag{6}
\end{equation*}
$$

To implement this idea explicitly, we need explicit construction of the projector \hat{p}
'time-dependent saicational puisciple' (TDUP)

Gauge freedom can be used to bring ℓ-th summand into site-canonical form w.r.t. to site ℓ :

$$
\begin{equation*}
|\Phi[T]\rangle_{M}=\sum_{\ell=1}^{N} \frac{A_{(1)} \quad A_{\{l-1]} T_{[\ell]} B_{(l+1]} \quad B_{[N]}}{1} \tag{2}
\end{equation*}
$$

There is still gauge freedom left: $\left.\int \Phi[T]\right\rangle_{M}$ does not change under the replacement

$$
\begin{gather*}
T_{[l]} \longmapsto \tilde{T}_{[l]}=T_{[l]}+Y_{[l-1]} B_{[l]}-A_{[l]} Y_{[l],}, \quad Y_{[0]}=Y_{[N]}=0 . \tag{3}\\
\left.A^{+} \tilde{T}=0 \quad A^{+} Y_{T}+Y B-A Y\right]=0 \\
\quad \text { with } Y_{[l]} \text { an arbitrary matrix of dimensions } D_{l} \times D_{l}
\end{gather*}
$$

Check: extra terms yield

$$
\begin{align*}
& \left.-\quad \sum_{l=1}^{N-1} \begin{array}{lllllll}
A_{(1)} & A_{\{l-1]} & A_{l l]} & Y_{\ell l]} & B_{[l+1]} & B_{[0]} \\
& Y & Y & Y_{\sigma_{l}} & & Y & Y
\end{array}\right) \tag{4}
\end{align*}
$$

This freedom can be exploited to impose the following 'left gauge fixing condition' (LGFC) on $T_{[\ell]}$:

$$
\begin{equation*}
A_{[l] \sigma}^{+} T_{[l]}^{\sigma}=0 \quad \forall l=1, ., N-1 \quad \int_{A^{+}}^{\uparrow_{c}^{+}}=0 \tag{s}
\end{equation*}
$$

[If T does not ratify LGFC, replace it by \tilde{T}, with Y chosen such that \widetilde{T} does satisfy LGFC.]

The LGFC has two convenient properties. First, it ensures orthogonality of tangent vector to its base point vector:
as required by property (iii) of Sec. TS.2. Second, it enables construction of an orthonormal basis for the orthogonal tangent space $\mathbb{T}_{|\psi[\mu]\rangle}^{\perp}$. To this end, we adopt a more convenient parametrization of $T_{[\ell]}$.

$$
\begin{aligned}
& \text { Parametrization of } T_{p l\}\}} \text { : }
\end{aligned}
$$

Recall that each $A_{[\ell]}^{\sigma}$ was obtained by 'thin' SVD of some $M_{[\ell]}^{\sigma}$. Let us consider corresponding 'fat' SVD:

Recall that each $A_{[\ell]}^{\sigma}$ was obtained by 'thin' SVD of some $M_{\lceil ¢]}^{\sigma}$. Let us consider corresponding 'fat' SVD: $D^{\prime} \frac{M^{\sigma}}{T_{d}} D^{\text {fat SVD }}=D^{\prime} \frac{u^{\sigma} \quad s}{d^{\prime} D^{\prime} D^{\prime} d^{\prime}} D$
A^{σ} is built from the first D columns of the $D^{\prime} d \times D_{d}^{\prime}$ unitary matrix U^{G} :

$$
D^{\prime} \frac{A^{6}}{\frac{1}{d}} u
$$ Let $A^{\prime \sigma}$ be similarly built from its remaining $D^{\prime \prime}=D^{\prime} d-D \quad$ columns:

$$
D^{\prime} \frac{A^{\prime \sigma}}{\alpha^{\prime}} D^{\prime \prime}
$$

Since U is unitary, the columns of A and A^{\prime} form orthonormal bases of mutually orthogonal subspaces:

Exploiting orthogonality of A and A^{\prime}, we can parametrize T in following factorized form

$$
\begin{equation*}
T_{[l]}^{\sigma}=A_{[l]}^{\prime \sigma_{l}} X_{[l]}, \quad D^{\prime} \rightarrow T_{d}^{2} D=D_{\substack{\prime}}^{A_{d}^{\prime \sigma} \rightarrow X} \underset{D_{d-D}^{\prime}}{A_{d}^{\prime}} \tag{II}
\end{equation*}
$$

where $X_{[\ell]}$ is an arbitrary $\left(D^{\prime} d-D\right) \times D$ matrix, and (9,far right) ensures that LGFC (5) holds.

After left-gauge-fixing, tangent vectors have the following general form, parametrized by X :

form an orthonormal basis for the orthogonal tangent space $\prod_{\langle\psi[M]\rangle}^{\perp}$, since

[(9) ensures that terms with $\ell^{\prime} \neq \ell$ vanish, and for the $\ell^{\prime}=\ell$ terms, we can close zipper from left and right.]

Tangent space projector

Tangent space basis yields desired projector onto orthogonal tangent space $\prod_{\mid \psi[\mathrm{m}])}^{\perp}$:

It is convenient to 'eliminate' the dependence on A^{\prime} using

$$
\begin{equation*}
A^{\prime \sigma^{\prime}} A_{\sigma}^{\prime t}=\mathbb{1}_{\beta}^{\alpha} \mathbb{1}_{\sigma}^{\sigma^{\prime}}-A^{\sigma^{\prime}} A_{\sigma}^{t} \tag{16}
\end{equation*}
$$

[Check: $\underbrace{A_{\sigma^{\prime}}^{\prime}\left(A^{\prime \sigma^{\prime}}\right.} A_{\sigma}^{\prime}{ }^{+}) \stackrel{(9)}{=} A_{\sigma}^{\prime+}, A_{\sigma^{1}}{ }^{+}\left(A^{1 \sigma^{1}} A_{\sigma}^{+}\right) \stackrel{(9)}{=})]$
Then

$$
\begin{align*}
& \hat{P}_{\pi_{\mid \psi(M])}^{+}}=\sum_{l=1}^{N}\left[\left.\begin{array}{lll}
\lambda & \lambda & \lambda \\
A^{+} & & A_{(l-1)}^{\dagger} \\
A & & A_{(l-1)} \\
\frac{\lambda}{\lambda} & \lambda & \lambda
\end{array}\right|_{\sigma} ^{\sigma} \begin{array}{lll}
A & 1 & 1 \\
B_{(l+1)} & B \\
B_{(l+1)} & B \\
k & k & k
\end{array}\right. \\
& =\sum_{\ell=1}^{N} \tag{17}
\end{align*}
$$

This is our final expression for desired tangent space projector. It is built fully from known tensors!

Schrödinger equation now takes the form

Can be integrated one site at a time:

$$
\begin{array}{lll}
C_{[l]}(t) & = & C_{[l]}(t)
\end{array} \text { forward in time }
$$

Forward sweep, starting from $\quad C_{(1)}(t) B_{[2]}(t) \ldots B_{[N]}(t)$

$$
\begin{aligned}
C_{[e]}(t) B_{(l+1]}(t) & \xrightarrow{H_{l e]}} C_{[l]}(t) B_{[l+1]}(t) \\
& B_{(l+1)(t)}
\end{aligned}
$$

$$
\xrightarrow{K(l)} A_{(l)}(t+2)
$$

$$
\begin{equation*}
A_{[l]}(t+\tau) \tag{13}
\end{equation*}
$$

etc.
until we reach last site, and MPS described by $\quad A_{[1]}(t+\tau) \ldots A_{[\omega-1]}(t+\tau) C_{\{N\}}(t)$
2. Turn around:

$$
\begin{equation*}
C_{[N]}(t) \xrightarrow[2(a)]{H_{[N]}} C_{[N]}(t+\tau) \xrightarrow[2(b)]{\left.H_{[\omega]}\right]} C_{[N]}(t+2 \tau) \tag{14}
\end{equation*}
$$

3. Backward sweep, for $\ell=N-1, \ldots, 1$, starting from $A_{[1]}(t+\tau) \ldots . A_{\{N-1\}}(t+\tau) C_{\{N\}}(t+2 \tau)$

$$
\begin{aligned}
& -i \frac{d}{d t}|\psi[M(t)]\rangle=\hat{P} \prod_{|\psi[M(t)]\rangle}^{+} \hat{H}|\psi[m(t)]\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|cccccc}
A & A & A & \Lambda_{\text {rel }} & B & B \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array} \\
& \dot{C}=\frac{d}{d t} C \\
& =\sum_{l}
\end{aligned}
$$

3. Backward sweep, for $\ell=N-1, \ldots, 1$, starting from $A_{[1]}(t+\tau) \ldots A_{\{N-1]}(t+\tau) C_{\{\omega\}}(t+2 \tau)$

$$
\begin{align*}
& A_{[l]}(t+\tau) C_{[l+1]}(t+2 \tau) \underset{3(a)}{=} A_{[l]]}(t+\tau) \tilde{\Lambda}_{[l]}(t+2 \tau) B_{[l+1]]}(t+2 \tau) \tag{15}
\end{align*}
$$

$$
\begin{align*}
& \xrightarrow[3(Q)]{H_{[l]}} \quad C_{[l]}(t+2 \tau) \quad B[l](t+2 \tau) \tag{17}
\end{align*}
$$

until we reach first site, and MPS described by

$$
C_{[1]}(t+2 \tau) B_{[2]}(t+2 \tau) \ldots B_{[N]}(t+2 \tau)
$$

The scheme described above involves 'one-site updates'. This has the drawback (as in one-site DMRG), that it is not possible to dynamically exploring different symmetry sectors. To overcome this drawback, a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in [Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!

