Tangent Space Methods TS.1

Basic idea: if a small change in an MPS is to be computed (e.g. during variational optimization
or time-evolution with a small time step), this change lives in the 'tangent space' of the manifold
defined by the MPS. Thus, construct a projector onto the tangent space, and implement gauge
fixing conditions to remove redundancy due to gauge degrees of freedom. [Haegeman2011]

[ (A(t))) iH W (A)) FIG. 1. A sketch of the manifold M = M ps (wire frame)

g J embedded in state space. The tangent plane Ty M to M (rotated
gray square) in a uMPS | (A)) (black dot) is spanned by
generally nonorthogonal coordinate axes |d, ¢(A)) and |9,(A))
(dotted lines). The direction f[-}]x!;[A)} of time evolution (arrow
with solid head) is best approximated by its orthogonal projec-
tion into the tangent plane (arrow with open head). The optimal
path [i(A(1))) (gray curve) follows the vector field generated by
these orthogonally projected vectors throughout M.

This very fundamental and general idea has been elaborated in a series of publications.
[Haegeman2013] Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry.
(For a gentle introduction to diff. geometry, see Altland & von Delft, chapters V4, V5.)

[Haegeman2016] Unifying time evolution and optimization within tangent space approach.
[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).

[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.

This lecture follows [Haegeman2016], formulated for finite MPS with open boundary conditions,
combined with some arguments from [Vanderstraeten2019, Sec. 3.2].

1. MPS and canonical forms (reminder)

Consider N-site MPS with open boundary conditions:
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where M[ a is matrix with elements "I 0 F , of dimension Db‘ X 'De , with Dy = D” =
shorthand: M = (H m,..., M[ ,a\) & [Ml  space of tensors with specified dimensions

Gauge freedom: |’l1‘fm]7 is unchanged under 'gauge transformation' on bond indices:

A, My ﬁ« ;’rd _ “ g, j,.';q ﬁ.x f‘;.s ) 6&1*! ﬁu””
rT1r1 2 T1Tr1r 1101 = T 1 1 T W
b o 6t - 6

M = Mg = Gy Mg Gia o §@ = G = 0 e

with ﬁ[@] € SL ( 'Dgl tC) group of general complex linear transformation in :Dl dimensions

..... e Al A “ e A Vi space of MPS with

Page 1



space of MPS with

space of

tensors ﬂps specified dimensions

of speciﬁed

dimensions I l{’[ﬁ v fuII Hilbert space
of dimension d N

'orbit' of tensors IWI'q‘])

|

specifying same state _7 pr

Note: I-HI and ™M are vector spaces, but MﬁPS is not, since sum of two MPS with same
bond dimensions in general is an MPS with larger bond dimensions. Mﬂps is a differential

manifold, since it depends smoothly on the tensors in M .

Gauge freedom can be exploited to bring MPS into left-, right-, bond- or site-canonical form:

Left-canonical: ll{*[MD = W with @ = { ©)

Gauge can be fixed uniquely by requiring A‘; A - 1 and Ac q’f, = Aeaamql ¥ ﬂm

Right-canoncial: \‘4’["}} = -?—(—/%—ﬁ%—t—’r&—t—f- with _t_}D — 3 )
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Gauge can be fixed uniquely by requiring B€&€+ = f and et B = Aea&maﬂ ¢ Bm
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Here |b(>£'_ \ and lﬁ)ﬁi are orthonormal basis for subspaces representing left- and right parts of chain.

Hamiltonian matrix elements:
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TS.2

2. Tangent space

Time-dependent Schrodinger equation: ;_iﬁ% (u({) 5y = j:) "M()) 0}

N
General solution is (t-dependent) vector in full many-body Hilbert space, (-Hl , of dimension o\ .

Goal: find (approximate) solution as (t-dependent) point in space of MPS with tensors of specified dimensions:
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Here we have introduced the general notation
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shorthand: T = (!fll/ /T[ﬂ\) e M

with composite index j= (2, %6 (5)

For a given set of tensors M & M| , specifying a given MPS 1 4{n\) & ‘MﬁPs , the space of all

states | E[T]>ﬂ with T &M, is a vector space (since | BT 1) islinearin T ). Itis called

the 'tangent space’, "{['{MMD, associated with the 'base point' 1%4(k) 7 in the manifold MﬂPS .

Note that
directions ST.L \'0([ ’WC MMPS < q—'“

perpendicular
to gauge orbit "L,-—”— /"‘_\ ,_H_| L
m emyy
tdirection along
gauge orbit \ ( ")>

'gauge orbit' (or 'fiber") / /

[Haegeman2014, Fig. 2] M MPps

Remark: the gauge freedom available for describing l"-[*EM'D implies a related gauge freedom

available for constructing its tangent space. We obtain a unique construction via the following criteria:

(i) We pick a representative M along each gauge orbit (fix gauge for|1(»[M}7 ) ,e.g.by

picking one of the canonical forms.

(i) Changes of ™ pointing ‘along a gauge orbit' amount to gauge transformations and do not change
(el . . _
]q,{m]) . To construct tangent space ““{' wmS we consider only Trs describing changes of M
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lq,[n]j . To construct tangent space T‘—.‘l' m we consider only T's describing changes of M
orthogonal to such directions.

(iii) Since time evolution is unitary (norm-preserving), {3{1) \'1(,(4[) S = (| ,weconsideronly T 's
describing changes of M producing tangent vectors orthogonal to | Y[HM ]7 itself.

L
We denote the vector space of | 's satisfying these conditions by —H—M .

L . - . . A
Theneach T < TH uniquely specifies a corresponding tangent vector \&[TD" in T‘ Py
the subset of tangent space orthogonal to ‘\',[n)> (w.r.t. scalar product in Hilbert space {| ):

<BMu\Biw)) = o ¢ Te Ty )

L
According to (3) and (iii), left-hand side of Schrodinger equation, - i \ﬂ{/({)) ,isin .
. o I3imy)
However, the right side, H "L{»(é)? , is not. In fact, action of H in general produces MPS with
larger bond dimensions. Our decision to solve time evolution within "/V(nps of specified dimension

thus inevitably involves an approximation. The best we can then do is to project | \1?({)7 into

orthogonal tangent space sing a projecto T 1 and write Schrédinger eq. as
r i , USi I r P , wri rodinger eq.
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To implement this idea explicitly, we need explicit construction of the projector "15 .

2>

Remark: Eq. (6) can also be derived using a 'time-dependent variational principle' (TDVP).

Hence time evolution with tangent space methods is also called TDVP in the literature [Haegeman2011].
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TS.3

3. Tangent space projector [Haegeman2016], [Vanderstraeten2019, Sec. 3.2]
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Gauge freedom can be used to bring £ -th summand into site-canonical form w.r.t. to site ¢ :

General form of tangent vector:
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There is still gauge freedom left: | E[‘ﬂ )M does not change under the replacement
Tta +— T[!Zl = Ty + \{[E-IXKW] - A[ﬂ T3 p Tro] = Y[Dl =0 . 3)
with \{[ﬂ an arbitrary matrix of dimensions De*Dz
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This freedom can be exploited to impose the following 'left gauge fixing condition' (LGFC) on T}e] :
T
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[1f T does not satify LGFC, replace itby T , with X chosen such that T does satisfy LGFC.]

The LGFC has two convenient properties. First, it ensures orthogonality of tangent vector to its base point

vector:
A R A X -ﬁn, B B
inilg(Tl), = ‘ T[] -5 w
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as required by property (iii) of Sec. TS.2. Second, it enables construction of an orthonormal basis for the
. To this end, we adopt a more convenient parameterization of Tm .

orthogonal tangent space T
|4 {m))

[Vanderstraeten2019, Sec. 3.2]

Parametrization of Tl;é'} .

Recall that each ﬂfe‘ was obtained by 'thin' SVD of some H:;] . Let us consider corresponding 'fat' SVD:
4

me PR v~ -
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Recall that each ﬂf’ﬂ was obtained by 'thin' SVD of some H:e] . Let us consider corresponding 'fat' SVD:
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A’ s built from the first D columns of the D'd x D4 unitary matrix [{° : D ‘0! D>
[; /
Let A & be similarly built from its remaining D“ = D‘A ~ D  columns: ' ¢ o
R

Since (,( is unitary, the columns of ] and AI form orthonormal bases of mutually orthogonal subspaces:
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Exploiting orthogonality of q and A , wecan parametrize -~ in following factorized form
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where Y I is an arbitrary (D‘J-D) x D matrix, and (9,far right) ensures that LGFC (5) holds.

After left-gauge-fixing, tangent vectors have the following general form, parametrized by X
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form an orthonormal basis for the orthogonal tangent space '_r" i nce
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[(9) ensures that terms with Z' £ vanish, and for the ) P terms, we can close zipper from left and right.]
¢

Tangent space projector

Tangent space basis yields desired projector onto orthogonal tangent space li
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It is convenient to 'eliminate’ dependence on A' . Completeness of column-vectors of u in (7) ensures:
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This is our final expression for desired tangent space projector. It is built fully from known tensors!

(14)

First term: Unit operator in site reprensentation for site { ;

Second term: subtracts components parallel to qu[M]) .



4. Time evolution [Haegeman2016, App. B] TS.4

Schrédinger equation, projected onto tangent space, now takes the form

d = p H 1y [mcty (
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that part of time-evolved state
orthogonal to initial state

= usual time evolution, minus - Z
4

Can be integrated one site at a time:

In site-canonical form, site { involves two terms linear in Cm : iC[el(t‘) = H[tl CR]“’) ()

Their contribution can be integrated exactly: replace Cm({) by C[el 4+7)= e -t H((’]'r C[e] @)
forward time step 5)

In bond-canonical form, site { involves two terms linear in AIC] : i/\m(l‘) = - K[l} Akl “,) ©

- KT
Their contribution can be integrated exactly: replace /\m({) by /\[e1 (t-7)= e K A[ﬂ i)
backward(!) time step @

To successively update entire chains, alternate between site- and bond-canonical form,

propagating forward or backward in time with H (e) or K[e] , respectively: ()
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until we reach first site, and MPS described by Cm({-{- 21 ) 5[21 [t+27)... &[”] (€+27)

The scheme described above involves 'one-site updates'. This has the drawback (as in one-site DMRG),

that it is not possible to dynamically exploring different symmetry sectors. To overcome this drawback
'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C]

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!



