
TS.1

Basic idea: if a small change in an MPS is to be computed (e.g. during variational optimization

or time-evolution with a small time step), this change lives in the 'tangent space' of the manifold

defined by the MPS. Thus, construct a projector onto the tangent space, and implement gauge

fixing conditions to remove redundancy due to gauge degrees of freedom.  [Haegeman2011]

This very fundamental and general idea has been elaborated in a series of publications.

[Haegeman2013]  Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry.

                           (For a gentle introduction to diff. geometry, see Altland & von Delft, chapters V4, V5.)

[Haegeman2016] Unifying time evolution and optimization within tangent space approach.

[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).

[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.

MPS and canonical forms (reminder)1.

This lecture follows [Haegeman2016], formulated for finite MPS with open boundary conditions, 

combined with some arguments from [Vanderstraeten2019, Sec. 3.2]. 

Consider N-site MPS with open boundary conditions:

where is matrix with elements , of dimension                    , with 

Gauge freedom: is unchanged under 'gauge transformation' on bond indices:

group of general complex linear transformation in        dimensionswith 

shorthand: space of tensors with specified dimensions

space of MPS with
space of

Tangent Space Methods
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Gauge freedom can be exploited to bring MPS into left-, right-, bond- or site-canonical form:

Left-canonical: 

Right-canoncial:

Bond-canonical: 

Here             and             are orthonormal basis for subspaces representing left- and right parts of chain.

Site-canonical:

Hamiltonian matrix elements: 

Hamiltonian matrix elements: 

related to site-canonical form by 

full Hilbert space
of dimension

space of MPS with
specified dimensions

space of
tensors
of specified
dimensions

Note:          and             are vector spaces, but                 is not, since sum of two MPS with same 

bond dimensions in general is an MPS with larger bond dimensions.                  is a differential 

manifold, since it depends smoothly on the tensors in   

with 

with 

'orbit' of tensors 
specifying same state

and 

and 

Gauge can be fixed uniquely by requiring 

Gauge can be fixed uniquely by requiring 

   Page 2    



TS.2

Time-dependent Schrödinger equation:

Goal: find (approximate) solution as (t-dependent) point in space of MPS with tensors of specified dimensions: 

Then 

For a given set of tensors                   , specifying a given MPS                                 , the space of all 

states                          with               , is a vector space  (since                  is linear in     ). It is called 

the 'tangent space',                  ,  associated with the 'base point'                in the manifold 

General solution is (t-dependent) vector in full many-body Hilbert space,           , of dimension  

shorthand: 

Here we have introduced the general notation

Remark: the gauge freedom available for describing                       implies a related gauge freedom 

available for constructing its tangent space. We obtain a unique construction via the following criteria:

(i) We pick a representative         along each gauge orbit   (fix gauge for                )    , e.g. by 

picking one of the canonical forms. 

(ii) Changes of        pointing 'along a gauge orbit' amount to gauge transformations and do not change   

               .   To construct tangent space                 , we consider only     's describing changes of         

with composite index 

Note that  

'gauge orbit' (or 'fiber')

direction along 
gauge orbit 

directions 
perpendicular 
to gauge orbit

[Haegeman2014,  Fig. 2]

2. Tangent space
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(ii) Changes of        pointing 'along a gauge orbit' amount to gauge transformations and do not change   

               .   To construct tangent space                 , we consider only     's describing changes of         

orthogonal to such directions. 

(iii) Since time evolution is unitary (norm-preserving),                                      , we consider only       's 

describing changes of                producing tangent vectors orthogonal to                      itself. 

We denote the vector space of         's satisfying these conditions by             . 

Then each                       uniquely specifies a corresponding tangent vector                   in                 , 

the subset of tangent space orthogonal to                (w.r.t. scalar product in Hilbert space         ): 

According to (3) and (iii), left-hand side of Schrödinger equation,                         , is in                  . 

However, the right side, , is not. In fact, action of          in general produces MPS with 

larger bond dimensions. Our decision to solve time evolution within                 of specified dimension

thus inevitably involves an approximation. The best we can then do is to project into 

orthogonal tangent space                  , using a projector                          ,  and write Schrödinger eq. as

To implement this idea explicitly, we need explicit construction of the projector 

Remark: Eq. (6) can also be derived using a 'time-dependent variational principle' (TDVP).

Hence time evolution with tangent space methods is also called TDVP in the literature [Haegeman2011].

   Page 4    



TS.3

General form of tangent vector:

Gauge freedom can be used to bring     -th summand into site-canonical form w.r.t. to site     :

There is still gauge freedom left:                      does not change under the replacement 

Check: extra terms yield 

This freedom can be exploited to impose the following 'left gauge fixing condition' (LGFC) on           :

[If        does not satify LGFC, replace it by         , with         chosen such that          does satisfy LGFC.]

with             an arbitrary matrix of dimensions 

fat SVD

The LGFC has two convenient properties. First, it ensures orthogonality of tangent vector to its base point 

vector: 

as required by property (iii)  of Sec. TS.2. Second, it enables construction of an orthonormal basis for the             

orthogonal tangent space                  . To this end, we adopt a more convenient parameterization of        .

Parametrization of          :     [Vanderstraeten2019, Sec. 3.2]

Recall that each            was obtained by 'thin' SVD of some           . Let us consider corresponding 'fat' SVD:

[Haegeman2016], [Vanderstraeten2019, Sec. 3.2]3. Tangent space projector
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is built from the first       columns of the                        unitary matrix         : 

Let be similarly built from its  remaining                                 columns:

fat SVD

Recall that each            was obtained by 'thin' SVD of some           . Let us consider corresponding 'fat' SVD:

Since         is unitary, the columns of        and       form orthonormal bases of mutually orthogonal subspaces: 

Exploiting orthogonality of        and         , we can parametrize             in following factorized form

where                  is an arbitrary                        matrix, and  (9,far right)  ensures that LGFC (5) holds. 

After left-gauge-fixing, tangent vectors have the following general form, parametrized by 

Here the set of states 

form an orthonormal basis for the orthogonal tangent space                      , since 
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[(9) ensures that terms with               vanish, and for the              terms, we can close zipper from left and right.]

Tangent space projector

form an orthonormal basis for the orthogonal tangent space                      , since 

Tangent space basis yields desired projector onto orthogonal  tangent space                    :

It is convenient to 'eliminate' dependence on . Completeness of column-vectors of       in (7) ensures:

Check: 

Then 

This is our final expression for desired tangent space projector. It is built fully from known tensors!

First term: Unit operator in site reprensentation for site     ; 

Second term: subtracts components parallel to                 .
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TS.4

Schrödinger equation, projected onto tangent space,  now takes the form 

Can be integrated one site at a time: 

Forward sweep, for                                 , starting from 1.

[Haegeman2016, App. B]

In site-canonical form, site     involves two terms linear in          : 

Their contribution can be integrated exactly: replace              by    

In bond-canonical form, site     involves two terms linear in          : 

Their contribution can be integrated exactly: replace              by    

or 

forward time step

backward(!) time step

To successively update entire chains, alternate between site- and bond-canonical form, 

propagating forward or backward in time with           or          , respectively: 

= usual time evolution, minus

   that part of time-evolved state
   orthogonal to initial state

4. Time evolution
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until we reach last site, and MPS described by 

Backward sweep, for                          , starting from 3.

Turn around: 2.

until we reach first site, and MPS described by 

The scheme described above involves 'one-site updates'. This has the drawback (as in one-site DMRG), 

that it is not possible to dynamically exploring different symmetry sectors. To overcome this drawback, 

a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in 

[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!
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