DMRG II: Original DMRG, tDMRG DMRG-IIL.1

1. Original formulation of DMRG [White1992], [White1993], [Schollwdck2011, Sec 2.2]

Goal: finding ground state of infinite chain

Infinite-size DMRG (iDMRG)

Diagonalize small system (e.g. 2 sites), write ground state in the form

8 ﬂcu dP 6&6“

_ o

l‘-(/) = |F7R[0(>L'q’ él_aﬁ e sa
W, l"\f’g\;g

'‘Block L' describes left part of system, with basis { { 0(>L {

'Block R' describes right part of system, with basis Z l(&)R 3

Now add two sites between blocks L and R, and seek new ground state of the form

o b

%6, 6p &\8{’ GRF
ETET SAPRIEAITY A A ;P St
—— —
by minimizing (Lanzcos) Cxl HL"I’\I"[’7 o, % S& 189

LY

Split enlarged system in the middle, and call left side (new) block L, right side (new) block R.
Write ground state in the form

¥7 ( & }> ,t(Jﬁ‘D
l¢> = | o) ‘ X .
Y K L % I l ,A hd l‘\ , I
—— —
with composite indices & = (&, 6 ) [ = ({5,6&) la3, ledg
of dimension @A = :Dd d . White's truncation prescription: compute reduced DM of A, Le
K Q\ . diagonalize
= T« L = ! = i’
P.. 'f’K (YA la)b (s %S L(al %:\a)L e
Al
(‘PL'\’ o e
Construct truncated basis for block L , using the ) eigenvectors [2 7 with the largest
e ~
eigenvalues PC . Rename: |°‘ >L = |c >L , here truncation happens
Ditto for block R. *6 , 6
« P o

Then iterate,: add two more sites, etc. $ 4 Py | ] |
6,
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lot, L R 6%

Remark: we established early on (see MPS-1.4) that the eigenvalues }bc of reduced density matrix of L,

are obtained by SVD of ’Lf“(‘"

¥

QR ——

n T

) X i

= O

< c

b = joc. = <Scc)z

So retaining the -eigenstates with largest is equivalent to just doing SVD-truncation on b
). ¢

Modern formulation

Start with MPS in bond-canonical form:

L 14
A g @ B
Add two central sites and find ground state (Lanczos): f A( { I
— —_—
L ~ N o~ R‘
. . AAR
Do SVD to split chain into tw,g larger blocks, and truncate: " T T
L R

Iterate: make chain longer and longer, until ground state energy per site converges.

'iDMRG state prediction' [McCulloch2008], [Schollwock2011, Sec. 10.1]

To speed up Lanczos search for ground state, construct ini;jglial guess for 7-]/ from previous data:

~ N~ o~
initial Ansatz AA Nb QR-decomposition
— - ~ -~ Y] -~ A
a ¥ B a "B A AA g a4 4 AN X F B
. /\ fnrhal
Logic: let A be followedby AR ,and B preceded by AA et
to reverse arrows between B and A , use A use this to initialize Lanczos

This leads to 'dramatic speedup' of iDMRG.

Finite-size DMRG

Grow chain to some length N using infinite-size DMRG algorithm. T 1 T T
\w -—
L R
Then reduce L, enlarge R, optimize Lf/: ,LI
I T U T ]
Diagonalize , truncate.
fL, ‘Pt
I L) L
— -——,e, e
L R

Iterate: sweep back and forth until convergence.

This is conceptually identical to variational optimization with two-site update.

Single-site DMRG is also possible «— variational single-site update.
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2. Time-dependent DMRG (tDMRG) [Daley2004], [White2004] DMRG-II.2.

Invented 2004 by Daley, Kollath, Schollwéck, Vidal, and independently by White, Feiguin.

A
Goal: to compute (w(£)) = ¢ f l%) Q)
Time-evolution operator for nearest-neighbor interactions (cf. iTEBD.1)
l\l Klo ﬂ(,
Even-odd decomposition of Hamiltonian: * " ¢ ® ¢ " . ¢
\ 2 3 s 6 7> 8
~ ~ A ~ ‘Z\ Z:; Zs *27
HZZﬁerﬂof-h{: O]
L
—— e
Trotterize: | = 'CM15 o Tt 7 — T_;-E
A ~ A /) g N
A 0 (T ” ~(1 H - IL/ ) t
M(f)-fCtH)(':(C c(%fﬁe))& z(e‘ gct‘tof.p(-tz) @
T e —
Ue Uo
Time-evolution protocol [Schollwéck2011, Sec. 7.1-7.3]

A A
Construct MPO representations for [{, and (/, , compute [1?(,{-;,_1)) = Ue U, (-4({))
,ié‘,-c e—iﬂ,t &af'{s'f (‘i)

. le' { | 1
i) MPO M°= |l ‘ITI‘ |I—El:‘j S)

bond dimension = 1, so consider factors separately

() o 1 2
I:‘I:l‘ZI N S - 4 4 gl j{-—-}f Jﬁ 3
i A reshape SVD 4 reshape i d (
‘ t (
00 _ 6 ~ O .
O €y S - \I\’ °"/" \I\) 2, /" =1, ..ol @)

can be constructed explicitly then SVD to yield

(ii) Evolve
> D _D > D > D b
(y (e = U, (g®) =
° ° 8
) J‘ (
ok & d o A o
reshape SVDDA Ddi D ﬁ s E D .47 Dot Zf
T N,
A A A —r‘( \A ol
(iii) Compress: either 'variationally' (global) or 'bond by bond' (local)

A
Variational compression: First apply full MPO for l/{‘> to entire chain. Then variationally minimize

no. . N e
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AN
Variational compression: First apply full MPO for l/{,, to entire chain. Then variationally minimize

“ lg(beg)) - (%WM‘) lll ¢y . This yields optimal (in variational sense)
bond dimens%n/"D o K”I) way to compress ‘qu to hf‘”“{'-’"“‘a
with given resources.
. PR R at e’ pga
Explicity: — | < 4 l 3 S - A (1_[, [y ) } «
A A A A ) A A& "4 A 4
S {
L = ) @)
ptoat o At AP
~ ;\ is fixed by normalization
L A R = AA condition: 13)

Sweep back and forth, until overlap <1-|»W \‘L[fw > nolonger changes.

Bond by bond compression

Apply (1, tobond1-2, —
SVD ; .
then reshape, SVD, truncate; truncate SVD " ;
- - truncate SVD I
repeat for bond 3-4, then 5-6, etc. truncate SVD

truncate

This protocal keeps bond dimensions low throughout, hence is cheaper. However, some interdependence
of successive truncations may creep in, hence variational compression is, strictly speaking, cleaner.

The difference between variational and bond-by-bond compression strategies becomes negligible for
sufficiently small  , because then the state does not change much during a time step anyway,
so trunctations are benign.

N
With bond-to-bond compression, there is no need to split H = A [_[e

U= Ue-to ()

Instead, Trotterize as follows:

" ~ N [a) [
fHt ~t.4 A -(“‘Lt —-[ﬁ T | :
AT = T Mt o, e T 2 07" :
Us) :
1st order Trotter
or
~ A . -2 /. 2 i
i (cifat, il byt Bt
etH :(& ¢ /ze L, V-1 o :

A - A
(e’('&ufl ‘L/z . e_’ealz/L e"c"tﬁ.) *&(‘Cs> :

2nd order Trotter ([ ")
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Error analysis
Error analysis for nth order Trotter scheme

tdi n
Z’i}o&u = (error per step) (# of steps) = ™ ’% = T t %)

linear in time; controllable by reducing T

Truncation error due to truncation of bond dimensions:

#* 4
i( ~ ¢ , grows exponentially!  (until you 'hit the wall')

Reason: under time evolution, state becomes increasingly more entangled; on a bond :?—-'—e-

55 =~ g(s‘(oz\ /('“(5“»431 (18)

entanglement entropy is

This is maximal if all singular values on bond are equal, (5"0‘&2' = —'5 = Sg £ ,A.%D )

If Hamiltonian H ( t) s changed abruptly (quench) such that global energy changes extensively, then

S(t) £ Sfo) ¢ ct (20)

[For less dramatic changes (e.g. local perturbation), entanglement growth is slower; but still significant.]

Si)

Bond dimension needed to encode entanglement entropy S e isgivenby D) = 7 (@)

If, however, bond dimension D is held fixed during time evolution, errors will grow exponentially.

A guantitative error analysis has been performed by [Gobert2005] on the exactly solvable XX model:

[Gobert2005] T T Z Sx Sx . 53 Sy (x4
"1 Le100,dt=0.05 XX 2 ie] [e+‘] fel [{‘\» 1
£
N 10702 T
! They performed quench, with initial state
—; 10793 - h '
5 v
5 oy | '
g 1070 szt ¢ : : 1 h’f'? = /[l T Tl 1\ f \L \L 1 l
o, - . -
~ 10-95. |30 11 J=o0 ¢
e = B ~
_06 m=30 &tz20 T
10 z - . .
B, A For +30 « T#o ,domain wall widens...
10797 e L m .
T 20 30 40 50
-08 L L
10
0 't\ b 2" e 20 30
1 ime
o 22V SN 0.4 1=40
FIG. 6. Magnetization deviation AM(7) as a function of time for _ domain wall
different numbers m of DMRG states. The Trotter time interval is o \t)roadgns
fixed at dr=0.05. Again. two regimes can be distinguished: For with{ime
early times. for which the Trotter error dominates. the error is 04
slowly growing (essentially linearly) and independent of m (regime 0.4 1=0
A): for later times. the error is entirely given by the truncation error. _ domain wiall
which is m-dependent and growing fast (almost exponential up to . F at time t30
. . L. . 40 60 80 100 120 160
some saturation: regime B). The transition between the two regimes n “
occurs at a well-defined “runaway time™ 7z (small squares). The |S%(u“ o4 -
0.2

inset shows a monotonic. roughly linear dependence of 7z on m. ° o - 03 04 08
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3. Finite temperature: purification [Verstraete2004b], [Schollwock2011, Sec. 7.2.1] DMRG-II.3

General quantum-mechanical density matrix for a mixed state, 'i) = Z | /D? Mv Ly | ()
# e ”
has three defining properties: ' denotes 'physical
(i) Hermiticity: r;{’ = f) @
(ii) Positivity: Eigenvalues are non-zerfo: f) ) = 2 la 7P f)“ éoil )
Ansighio_ l,msomfczrl o
70
(iii) Normalized: Tt f’S = | 5 = f“ = | (W
0&
Expectation values: {d) = Tr(%0 ) or % (pO) (s)
F Tr(p )

if one works with non-normalized 'f"
e ey
Purification

N~
Can we represent P in terms of a pure state?
Yes: double Hilbert space by introducing an 'auxiliary' state for each physical state, and define

'purified state': I£> = % \0(?1\ 0‘7P J\/,O-: € 'Z’~®ﬂl° (6)
auxiliar?? ?physical Pt

This can be viewed as Schmidt decomposition of a pure state in doubled Hilbert space.

Norm yields trace: (‘42\?) = %‘(P:' %ﬂl\éﬁ;\jzl O‘Zﬁ = ; f« = fﬁ? @)

‘I
8"«
Tracing out auxiliary state space from \5_}2 DZ4 @ ] (a pure DM in doubled Hilbert space) @)
yields physical density matrix J?)P (a mixed DM in physical Hilbert space):

T X

[}

z Z{ <(g lx'ﬂxb [{J—' f[T <«l<«lf0 €))
%“,' e
Z.{ ‘0(>P Pol 5"“ = P’P

I}

@

Purified-state expectation values in doubled Hilbert space yield thermal averages in physical space:

<?’10®6r|"£\) - fo_' (Xl(ﬂ[ﬂ,@b‘x>\«)¢—' (10)

K
Z Lo O L« pe = To (13?‘;»\’(60 )

"

If f’,‘ is not normalized, use <{(r| 1_®5'| 1]'(5) T 4 ;‘)‘_ .
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If P is not normalized, use <1 ﬂ_ago'"l 1)

NN

Thermal density matrix

N
Thermal equilibrium is described by f"g _ e FHP= 2. [ o )? e "PE“ ?<o< | (13)
oK

Not normalized: A yd ’FEd partition function o ()
= e = =
l.r? Fe ” Z (F)

rified version: - £ -
Purified versio l{g.» — ;\@alol)?e [S'f/z = e FHP/ZZW?Q\«)P us)

'3
. —
acts only on physical spa[ell —

14>

1y

. . N
135 = gmam? -2 \mﬂ}sﬁ?.-. o 26) = T (z%m»am)?) (1e)

=

‘———N——J
maximal a-p entanglement

1l

product state, with each factor describing maximal a-p entanglement at site /£,

Note:at T =00 ,i.e. [5 = 0O ,we have (1}2 = |1£°7 (all states () are equally likely).
5T e
Check: . f/_"_4 “ ]

s Te[ePRg e PR) LT (88 v
P e
Protocol for finite-T DMRG calculations
6. 6+ 0"_ ‘u -
& auxiliary legs
Start from pure product state NI L T A f 03
- | . SR R R A R -
in doubled Hilbert space: 6 e 6, Sy e physical legs

bond dimension = 1

Perform imaginary-time evolution over a 'time' , acting only on physical space:

F L < auxiliary legs
[ \
K S o =

(@:e—(“'rh\qa): SR SR SR
f, S S S

(Trotterize...) compress

o N SIS S SR S

A 4
4

S

& physical legs

For thermal averages, trace out auxiliary space:
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