
DMRG-I.1

The Density Matrix Renormalization Group (DMRG) was invented by Steve White (student of Ken 

Wilson) to solve general quantum chain models. [White1992], [White1993]

•

First realization of connection between MPS and DMRG in limit                   : Ostlund & Rommer 

[Ostlund1995]

•

Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra

[Dukelski1998]

•

Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac & Verstraete [Verstraete2004]•

Time evolution: Daley, Kollath, Schollwöck, Vidal [Daley2004], White, Feiguin [White2004]•

Connection to NRG: Weichselbaum, Verstraete, Schollwöck, Cirac, von Delft  [arXiv:0504305], 

[Weichselbaum2009]

•

[Schollwöck2011, Sec. 6.3]

Iterative ground state search1.

View space of all MPS of given bond dimension,       , as variational space. 

Minimize                       in this space, subject to constraint of unit normalization,                        .

Hence extremize 

Lagrange multiplier

Do this one         -tensor at a time:

Graphical representation, assuming mixed-canonical form w.r.t. site       :

close zippers from 
left and right

DMRG-I: Ground State Search
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This is an eigenvalue equation for             and can be solved with standard linear algebra tools,

e.g. Lanczos algorithm (next section).

More generally: if             is not represented in mixed-canonical form, one obtains a generalized 

eigenvalue equation of the form                                 , with      defined by r.h.s. of (5) .

Use that 'eigenvector'         yielding lowest eigenvalue (= current estimate of ground state energy) to 

'update' MPS, then move to next site, switch to mixed-canonical form of site          ,

optimize              , etc..

'Sweep' back and forth until convergence of ground state energy has been achieved.

This works remarkably well for 1D chains with short-ranged interactions. 

In the notation of (MPS-V.3.11):

updated

with
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DMRG-I.2[Lanczos1950], [Ojalvo1970], [Paige1972], [Koch2011]

Fast way of finding extremal eigenvalues of an Hermitian NxN matrix,          .•

Prerequiste: an algorithm for computing                 , for any vector                .•

We seek the extremal value of 

Denote extremal value by

The direction of steepest ascent of the functional                  , evaluated at            , is given by

'functional gradient':

Moving in opposite direction will thus lower the energy:

for small, positive 

To find optimal value for     , minimize                                    w.r.t. the 'variational parameter'      , 

in the space 

First basis vector: 

Second basis vector: 

orthonormalize 
w.r.t. to 

Construct a normalized basis for this space (for a random initial state            ):

Now find a matrix representation of H in this space:  define

then

hence in the space             , the Hamiltonian has the matrix representation 

normalization factor, 
such that

2. Lanczos method
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hence in the space             , the Hamiltonian has the matrix representation 

The ground state of              , say             , yields the optimal choice for           .

Now we could iterate: use              as starting point for another optimization step. Convergence is 

rapid. Monitor quality of result by computing the residual energy variance,

and stop when it drops below some threshold.

Krylov space

After       steps, starting from               , the resulting vector will live in 

'Krylov space of        over            '       (dimension               ).

Instead of repeatedly minimizing in 2x2 subspaces, we could first  construct            , then  compute its 

ground state. (This is faster, since it amounts to using           simultaneous variational parameters 

instead of        separate ones.) To do this, iteratively construct a 'Krylov basis' for            :

Krylov basis

As before: 

Third vector: 

normalize

where 

Note: , since 

Fourth vector: 
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Thus we obtain a two-term iteration scheme: we need to store only 3 vectors at a time!

nth step:

with 

[If it happens that                     , pick an arbitrary                    orthonormal to all                            .]                            

Throughout we have: for 

since 

Hence, rearranging (24): 

Hence, in          ,  

H has tridiagonal form:

Ground state of              satisfies the eigenvalue equation 

are the best approximations, within the Krylov space       , of true ground state energy and ground state.

and Thus

Note:              can be constructed 'on the fly', one term at a time, by restarting Lanczos iteration from  

The Lanczos scheme converges exponentially fast, with a rate          [gap to first excited state]         .
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Summary

Start with arbitrary1.

First iteration step:    (i)2.

(ii) 

(iii)

General iteration step, for              :3.

(i)

If                   , then (ii)

else, pick                as arbitrary normalized vector orthogonal to all 

(iii)

(iv)

(v)

and back to 3(i).

There are other ways of organizing this iteration loop, but the one shown here is numerically the most stable. 
[Paige1972]
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DMRG-I.3

Suppose we have an MPS representation for ground state, 

found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to 

Extremize: 

Lagrange multipliers enforce and 

built from      -tensors of built from          -tensors of 

Generic structure of this equation, in mixed-canonical representation of site     [compare (DMRG-I.1.7)]:

with       and       computed iteratively, 

Index-free notation for (5):

Extremization w.r.t.               yields

with 

Define projector onto subspace orthogonal to             :

with indices: so that 

Project (8) onto this subspace:

with

3. DMRG for excited states
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This is simply an eigenvalue problem, for            , in subspace orthogonal to          .  It can be solved 

using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to            : 

Given an arbitrary initial state              ,  project it onto orthogonal subspace, 

and construct new Krylov vectors using 

,

Why not simply use excited states in          ? Because numerical noise can cause the 

to be not exactly orthogonal, hence for rather than 0.

This leads to spurious multiple copies of eigenstates ('ghost states'). For the ground state, the variational 

principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it 

does. To prevent this, explicit reorthogonalization is needed at every step, using       , as indicated above.

Block-Lanczos for excited states

Standard Lanczos: represent action of H as

Block-Lanczos: start with set of       orthogonal vectors,

, and represent action of H as 

with 

etc. Then the lowest M eigenstates of block-tridiagonal matrix 

give the Lanczos approximation for lowest M eigenstates of H

and
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DMRG-I.4

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get 

stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no 

way of enlarging the Hilbert space during the variational search to explore other symmetry sectors. 

Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

Represent MPS in mixed-canonical two-site basis:

Then extremize simultaneously w.r.t. 

and 

Compact 
notation: 

close zippers from left and right

with composite index 

and 

Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated            :          

updated 

reshape

Key point:        has dimensions                  , hence explores a larger state space than previously,

in general also including different symmetry sectors!

Truncate down to        and reshape:

This concludes optimization of                . Now move one site to the right and repeat. Sweep back and 

forth until convergence of full chain.

[Schollwöck2011, Sec. 6.4]4. Two-site update
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