DMRG-I: Ground State Search

[Schollwéck2011, Sec. 6.3]

DMRG-I.1

* The Density Matrix Renormalization Group (DMRG) was invented by Steve White (student of Ken
Wilson) to solve general quantum chain models. [White1992], [White1993]

« First realization of connection between MPS and DMRG in limit IJ — o

[Ostlund1995]

» Realization that finite-size DMRG leads to MPS: Dukelsky, Martin-Delgado, Nishino, Sierra
[Dukelski1998]

» Modern formulation: Vidal [Vidal2003], [Vidal2004], Cirac & Verstraete [Verstraete2004]

« Time evolution: Daley, Kollath, Schollwdck, Vidal [Daley2004], White, Feiguin [White2004]

: Ostlund & Rommer

» Connection to NRG: Weichselbaum, Verstraete, Schollwock, Cirac, von Delft [arXiv:0504305],
[Weichselbaum2009]

1. Iterative ground state search

View space of all MPS of given bond dimension, D , as variational space.

Hence extremize

Graphical representation, assuming mixed-canonical form w.r.t. site ¢
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Qa o' . [
In the notation of (MPSV3.11): %, Agy = A Ay with  a'=(ol6/p) g

This is an eigenvalue equation for Qm and can be solved with standard linear algebra tools,

e.g. Lanczos algorithm (next section).

More generally: if ) isnot represented in mixed-canonical form, one obtains a generalized ( b)
eigenvalue equation of the form H A = WA ,with N defined by r.h.s. of (5) .

Use that 'eigenvector’ ﬂ[a yielding lowest eigenvalue (= current estimate of ground state energy) to
'update' MPS, then move to next site, switch to mixed-canonical form of site Aot ,
optimize ﬂ(,(+,] , etc..

updated
T [ ¢ T I T 1
A NI~
< ;
_ >

'Sweep' back and forth until convergence of ground state energy has been achieved.
This works remarkably well for 1D chains with short-ranged interactions.
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2. Lanczos method [Lanczos1950], [Ojalvo1970], [Paige1972], [Koch2011] DMRG-I.2

« Fast way of finding extremal eigenvalues of an Hermitian NxN matrix, H

« Prerequiste: an algorithm for computing || [y , for any vector [y

We seek the extremal value of E “q»& = L[ H (%) 0)
{w lw)
Denote extremal value by EE3 = wmin E{h!(ﬂ = € [\1\'@1 (€3

The direction of steepest ascent of the functional € [(’tﬂ] , evaluated at I—\p7 , is given by

'functional gradient': %E_M} = ﬁ - M \1(/7 (3
s Lyl <w\y) Lty
= H - E_["LW] \'47 = | ]
AL, a7
Moving in opposite direction will thus lower the energy:
= [ 4y ~ « \U(,‘) l < E= “H—)l for small, positive ¢ (8)

To find optimal value for o/, minimize E {\'Lﬂ = ot \’%)S w.r.t. the 'variational parameter' o ,
in the space K( = s()awi\"{'j , (71(&7 S = sraw\ %(1('7, H (%7 z (A

Construct a normalized basis for this space (for a random initial state () ):

4
[y’ @

Second basisvector:/\},h( ju) = [UA'J“) = Koy = (WD {udHlvy) @®)

_——q’—’_'
normalization factor, orthonormalize = Qo

such that (v (v} = | w.rt to (19

(‘51\(?\.’ L( .:\]({}I‘Sl) = <U'(\H‘U'¢,7 Q)

Now find a matrix representation of H in this space: define

ne = Lv,IH lv) o <ALIED) ) b, = &GI7)

First basis vector: v,y =

w

then )
“['Utb = "UJ Ll + ['lfov Ao D]

hence in the space K, , the Hamiltonian has the matrix representation

{(‘UJH"Jb} LUyl H/Ut> \\ {ao IDT \

rl
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The ground state of HK‘ , say l S 7K , yields the optimal choice for o¢
]

Now we could iterate: use lS 7!( as starting point for another optimization step. Convergence is
|

rapid. Monitor quality of result by computing the residual energy variance,
2
i) = (H -l " = Rl HTH) — Zyldluy (@

and stop when it drops below some threshold.

Krylov space

After L, steps, starting from (0‘07 , the resulting vector will live in

KL (o) = spentlo, #1ved, 800 , ) HE oY w

'Krylov space of H over |U.9" (dimension L +1 ). ()

n

I

Instead of repeatedly minimizing in 2x2 subspaces, we could first construct K L, ,then compute its
ground state. (This is faster, since it amounts to using (. simultaneous variational parameters

instead of L. separate ones.) To do this, iteratively construct a 'Krylov basis' for KL,

Krylov basis
As before: Ll\UD = |5 = KlveY = aolu) (16
normalize

Third vector: \D?_\-mﬁ = |G1:> = H Z \U‘v <‘U’\\'\l'U‘h (1)

{=°
=) -t o — (U b 1)
o [Hlv) KUt
(M ———— U9
where by =/{RIGY = <ol Wlu) (4)

Note: <U-L‘H' ('Uo) = D , since H [vo) €& Semi lUQ/ \u()z (20

Fourth vector: \03 ks)) = 150 = H (v - Z \v’ §(al H ) )
\]’0
= H lzﬂ - \LSD a ~ (U‘)L - erD 6 2

" (20) ¥/

f___,_—_—.. —_— A, A ="y
G H)  TTIHIs) 4V
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Thus we obtain a two-term iteration scheme: we need to store only 3 vectors at a time!

nth step: {)“H \Un4|> = I(AJ';W) = H\'U‘.Q - Z \’LS:‘><U\\' H v (13)
J=°

t g
= Hluw) = 1o e = lvwa Y b (0
with G, = <‘U'\,\IH ['Uu) , Lv\ S <Un\ H ‘ U,,l_.|> LZS)
[If it happens that b = o , pickan arbitrary | U, orthonormal to all |v:i§’ [0 u]

Throughout we have: <0’MlH (vJ 7 = o0 for \f = 0 n-2 (26}

rTTy

since (e

H \U‘\P c S(Mv\ i \Lfs“>/ \1)'\-‘7/ lv‘-_(>} (23}

Hence, rearranging (24):  Hlu) = |u,.) LY + by a, + ) &m( (28)

Hence, in KL , { Go (o’,' )
HK <
H has tridiagonal form: L b, «, (qf
¥
b &, ('-‘3
l()s K o
¥
Ay be
b b

\ /

Ground state of satisfies the eigenvalue equation H ( L J = EL ( ¢

Thus 3 d | L? = i \U)( L)J
4 an 1(/3 - J=° \( ’Lrﬁ

are the best approximations, within the Krylov space K L of true ground state energy and ground state.

Note: N,é‘? can be constructed 'on the fly', one term at a time, by restarting Lanczos iteration from U3 ,

[}
The Lanczos scheme converges exponentially fast, with a rate ~ [gap to first excited state]/ C
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Summary

1. Start with arbitrary

[Uo)
2. First iteration step: (i) l:’;) = H v
@M o, = GV
Gy 167) = B - a.tuD

3. General iteration step, for W> |
(i) g,’\ = <{}»‘ 80\)

(i) If Ln + o0 ,then (va) =

150/ b

else, pick \t,)  as arbitrary normalized vector orthogonal to all \\ID, e fuwa?

iy 15,9 H s,y

i

(iv) G

1

Cur LU
V) (e, Y

and back to 3(i).

‘6&\-(7 - (UV\> [/ N (U«\-qv K;:\

There are other ways of organizing this iteration loop, but the one shown here is numerically the most stable
[Paige1972]
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3. DMRG for excited states DMRG-1.3

57 T”}[e]

found by DMRG. Excited states can be constructed repeating a DMRG sweep in space orthogonal to lf)),

Suppose we have an MPS representation for ground state, | 3) )

Extremize: i () - A Lylyg) - 7, 41_(«\%7 (2
Lagrange multipliers enforce  <wly 5 = | Loy 137 = )
Extremization w.r.t. ﬂ;‘c] yields
Ay
o« M6
SR - T « i g
\ 3 AT 5,)~ > - > €
> > = ()K( \ l <‘ \ le'
N A 1 d—’ 4 {7 ' AW SV I A’ N
£ Py {,l 3 V /\/\/\ @

built from @ -tensors of \1.[»7

built from A

8 _tensors of |67

Generic structure of this equation, in mixed-canonical representation of site {4 [compare (DMRG-1.1.7)]:

a' ! . l
‘ a q(o;] (r\e A« ll\zaa with F\t A | q': 3“ 2 o, ©
with — a'= (o) 67 ') i - !
p “ A6 N
o' _ dlo_lpl 5 p(o-[s f" (
i = q Lo M(][q Kien ( 7 &)
x' B
- AS
with [ and R computed iteratively, " « Ra ’o(
AT P
x' o! = x6 o e x'
Lm ® 'q[e] 6z L(e—d = ﬂ{cl ® L L o At y
Index-free notation for (5): HIAY = A 1AY + Lo \37 (A \ﬁ) o (&
Define projector onto subspace orthogonal to |67 : 'PS = 1 - ‘67(3\ (4)
: 4
[with indices: ?iala = & W - 3a Sa so that ?S“la A “ = 0 } (o)
@ 1
Project (8) onto this subspace: PS H(’Pﬁ + l%)iﬁl)lﬂv = r,\‘ Pﬂ IAY + o (Y
—
(8) =
Pl D AN 1 D taas



Péu Pa iy = X P& TN ()

This is simply an eigenvalue problem, for ?% H , in subspace orthogonal to lﬁ) . It can be solved

using straightforward generalization of Lanczos scheme, using Krylov subspace orthogonal to | 37 :

Given an arbitrary initial state 1V , project it onto orthogonal subspace, |u/) = 'Pﬁ\l)‘,br
(3)

and construct new Krylov vectors using

‘A\;M|7 = PﬁH (OM'(> ~ louY e - (Va-(? &;: (%)

Why not simply use excited states in KL ? Because numerical noise can cause the \U},\>

. -6
to be not exactly orthogonal, hence for J ‘dn-2 R \Uj Y x~ (o rather than 0.

This leads to spurious multiple copies of eigenstates (‘ghost states'). For the ground state, the variational
principle ensures that the loss of orthogonality does not become a severe problem. But for excited states, it

does. To prevent this, explicit reorthogonalization is needed at every step, using ?ﬁ , as indicated above.

Block-Lanczos for excited states

‘ 1
ao B(
Standard Lanczos: represent action of H as "
lO\ A | ‘OL
Hlus) = e g + (Db =
b .
Block-Lanczos: start with set of ™ orthogonal vectors, \ j
ilfo’ l> , - A M , and represent action of H as

Hlw,; ) = \vo)i} 3l.b(a.)i * \U‘/;QQ"):\ :
with ‘("-So/:‘ | 01,-0 = 0 (v‘)‘\\\ U‘/i,? = 3:',;
and ((M\“' = <Uo/'|, | H (Uo,i'?/ Qa, )'l ¢ - <()71$ (H ‘Uo,i>

etc. Then the lowest M eigenstates of block-tridiagonal matrix [ oy “ﬁ \ “Bt X

give the Lanczos approximation for lowest M eigenstates of H & |° - \
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4. Two-site update [Schollw6ck2011, Sec. 6.4] DMRG-1.4

If one encodes symmetries (see Sym-I to Sym-III), then 'one-site update' (discussed above) can get
stuck: if one starts in the wrong symmetry sector, one stays there, because one-site update offers no
way of enlarging the Hilbert space during the variational search to explore other symmetry sectors.
Cure: 'two-site' update, which variationally optimizes two A-tensors at a time.

Represent MPS in mixed-canonical two-site basis:

133 Ay 3
- \ “Se g tOLp L (c] (e
L °'e.« (ﬂ
Then extremize simultaneously w.r.t. ,) )
t b -
@)
. \ﬁ(e] Breng
e LR
: > > < = 1 # h le' Xaﬂ SR S
A Ae' AT A A 2 "fd, ¢ \
4 0(, #\4' \ \

< iy BBy

> —7—¢
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close zippers from left and right
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t (
ﬁggtp;g::]t: \-\a o (ﬂ BY = 9& (F\ B)“’ with composite index @ = (o(, 6 ¢, ";) )
and 1 « [$ < r 7 +’( ﬁ <
l tS’ TF . . ts" o
a S N . —
K. = - > l . ‘ = l l ©)
A g l&" A y '
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Use Lanczos to find lowest eigenvalue of eigenvalue equation (5), and reshape updated (Ag) :

1
~ g reshape o =z SUD o hw < \/ -
updated (rﬁ] B) = ,_._orﬁ = hd Gf @)

= —_——
Y4 DA D DA

Key point: < has dimensions DAxDd , hence explores a larger state space than previously,
in general also including different symmetry sectors!

~ -f ~ ~
Truncate down to ) and reshape: ~ s [A, (S, \l, ) GF e Ay b g @)
Y D D DA T L

0 o

This concludes optimization of ﬂ{ﬂ . Now move one site to the right and repeat. Sweep back and
forth until convergence of full chain.
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