Consider an operator acting on N -site chain:

$$
\begin{equation*}
\hat{O}=\left|\vec{\sigma}^{\prime}\right\rangle O_{\vec{\sigma}}^{\vec{\sigma}^{\prime}}\langle\vec{\sigma}| \tag{1}
\end{equation*}
$$

It can always be written as 'matrix product operator' (MPO),
$\hat{o}=\left|\vec{\sigma}^{\prime}\right\rangle W^{1 \sigma_{1}}{ }_{\mu}^{\mu}, W^{\mu \sigma_{2}} \underbrace{\nu \sigma_{2}} \ldots W^{\lambda \sigma_{N}^{\prime}} \sigma_{N}\langle\vec{\sigma}|$

$$
\equiv\left|\vec{\sigma}^{\prime}\right\rangle \prod_{l} W^{\sigma_{l}^{\prime}} \sigma_{l}\langle\vec{\sigma}|
$$

using a sequence of QR decompositions:


reshape as matrix
with composite indices
QR decomposition


(4)

In general, this produces MPO with growing bond dimensions:

$$
d^{2},\left(d^{2}\right)^{2},\left(d^{2}\right)^{3}, \ldots
$$ $=$ $=$ reshape again



But for short-ranged Hamiltonians, bond dimension is typically very small, $\theta(1)$.

1. Applying MPO to MPS yields MPS $\left|\psi^{\prime}\right\rangle=\hat{O}|\psi\rangle$

$|\psi\rangle=|\vec{\sigma}\rangle \prod_{l} A_{[l]}^{\alpha_{l} \sigma_{l}} \beta_{l}$
(7) $\quad\left|\psi^{\prime}\right\rangle=\hat{O}|\psi\rangle=|\vec{\sigma}\rangle \prod_{l} A_{[l]}^{\prime} \alpha_{l}^{\prime} \sigma_{l}^{\prime}$
$A^{\prime \alpha^{\prime} \sigma^{\prime}} \beta^{\prime}=W^{\mu \sigma^{\prime}} \nu \sigma A^{\alpha \sigma} \beta$
with composite indices, $\quad \begin{aligned} & \alpha_{l}^{\prime}=(\alpha, \mu), \\ & \beta_{l}^{\prime}=(\beta, \nu)\end{aligned}$
of increased dimension:

$$
\begin{equation*}
\tilde{D}_{A^{\prime}}=D_{W} \cdot D_{A} \tag{10}
\end{equation*}
$$

In practice, application of MPO is usually followed by SVD+truncation, to 'bring bond dimension back down':

Addition of POs
$\hat{O}+\hat{\tilde{O}}$
Let $\left.\hat{O}=|\vec{\sigma}|\rangle \prod_{l} W^{\vec{\sigma}_{l}^{\prime}} \vec{\sigma}_{l}\langle\vec{\sigma}| \quad \hat{\tilde{O}}=|\vec{\sigma}|\right\rangle \prod_{l} \tilde{W}_{l}^{\sigma_{l}}{ }_{\sigma_{l}}\langle\vec{\sigma}|$

$$
\begin{aligned}
\hat{O}+\hat{\tilde{o}} & =\left|\vec{\sigma}^{\prime}\right\rangle[w w \ldots w+\tilde{w} \tilde{w} \ldots \tilde{\omega}]\langle\vec{\sigma}| \\
& =\left|\vec{\sigma}^{\prime}\right\rangle T_{r}\left(\begin{array}{ll}
w & \\
& \tilde{\omega}
\end{array}\right)\left(\begin{array}{ll}
\omega & \\
& \hat{w}
\end{array}\right) \ldots\binom{w}{\tilde{\omega}}\langle\vec{\sigma}|
\end{aligned}
$$

$=$ MPO in enlarged space

Multiplication of POs



$$
\tilde{w}^{\mu^{\prime} \sigma^{\prime}}{ }^{\prime} \sigma=W_{\nu \bar{\sigma}}^{\mu \sigma^{\prime}} \tilde{w}^{\bar{\mu} \bar{\sigma}} \bar{\nu}_{\sigma}
$$

$$
w \tilde{w}=\widetilde{w}
$$



$$
\left.\hat{H}=\sum_{l=1}^{N-1} J^{z} \hat{S}_{l}^{z} \hat{S}_{l+1}^{z}+\frac{1}{2} J \hat{S}_{l}^{t} \hat{S}_{l+1}+\frac{1}{2} J \hat{S}_{l}^{-} \hat{S}_{l+1}^{f}\right]-\sum_{l=1}^{L} S_{l}^{z}
$$

is shorthand for $=J^{z} \hat{S}_{1}^{z} \times \hat{S}_{2}^{z} \otimes \hat{1} \otimes \cdots(x)$

$$
+J^{z} 1 \otimes \hat{S}_{2}^{z} \otimes \hat{S}_{3}^{z} \times \ldots(x 1 \quad+\ldots
$$

Contains sum of one- and two-site operators. How can we bring this into the form of an MPO?
Solution: introduced operator-valued matrices, whose product reproduces the above form!

$$
\begin{aligned}
\hat{H} & =\left|\vec{\sigma}^{\prime}\right\rangle \prod_{\ell} W_{[l]} \sigma_{l}^{\sigma_{l}^{\prime}}\langle\vec{\sigma}| \\
& =\left(\left|\sigma_{1}^{\prime}\right\rangle W_{[1]} \sigma_{1}^{\prime}\left\langle\sigma_{1}\right|\right) \otimes\left(\left|\sigma_{2}^{\prime}\right\rangle W_{[2]}{ }^{\sigma_{2}^{\prime}} \sigma_{2}\left\langle\sigma_{2}\right|\right) \otimes \ldots \otimes\left(\left|\sigma_{N}^{\prime}\right\rangle W_{[N]}^{\sigma_{N}^{\prime}}\left\langle\sigma_{N}\right|\right) \\
& =\hat{W}[1] W_{[2]} \otimes \ldots \otimes W_{[N]} \quad=\text { product of one-site operators. }
\end{aligned}
$$

Each $\hat{W}_{[\ell]}$ acts only on site $\ell \quad$; their tensor product gives the full MPO.

Viewed from any given bond, the string of operators in each term of $\hat{H}$ can be in one of 'states':


Build matrix whose element $i j$ implements 'transition' from 'state' $j$ to $i$ leff on its left:

Check: multiplying out a product of such $\hat{W}$ 's yields desired result:

$$
(\vdots)(:)=(\vdots)
$$

$$
\begin{aligned}
& =\left[-h s^{z}, \frac{J}{2} \hat{S}^{-}, \frac{J}{2} \hat{S}^{+}, J^{z} \hat{S}^{z}, 1\right]\left(\begin{array}{l}
\mathbb{1} \oplus \mathbb{I} \otimes \mathbb{I} \\
\hat{S}^{+} \otimes \mathbb{U} \in \mathbb{U}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(-h S^{z} \otimes H 1 \theta 1+\frac{J}{2} \hat{S} \otimes \hat{S}^{+} \otimes 1+\frac{J}{2} \hat{S}^{+} \otimes \hat{S}^{-} \otimes 1+J^{2} \tilde{S}^{z} \otimes \hat{S}^{2} \phi\right) 1 \\
& \begin{aligned}
&+\mathbb{1} \otimes\left(\cdot h \hat{S}^{z}\right) \otimes \mathbb{1}+\mathbb{1} \otimes \frac{J}{2} \hat{S}^{-} \otimes \hat{S}^{+}+1 \otimes \frac{I}{2} \hat{S}^{+} \otimes \hat{S}^{-}+\mathbb{1} \otimes J^{2} \hat{S}^{z} \otimes \hat{S}^{z} \\
&\left.+\mathbb{1} \otimes 1 \otimes\left(-h \hat{S}^{z}\right)\right)
\end{aligned} \\
& =-\boldsymbol{h} S^{z}\left(\mathbb { 1 } \otimes \mathbb { 1 } \left(\otimes \mathbb{1}+\frac{J}{2} \hat{S}^{-} \otimes \hat{S}^{\dagger} \otimes \mathbb{1} \mathbb{1} \mathbb{1}+\frac{J}{2} \hat{S}^{+} \otimes \hat{S}^{-} \otimes \mathbb{1} \otimes 1+丁^{z} S^{z} \otimes S^{2} \otimes \mathbb{U} \mathbb{1}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\mathbb{L} \otimes I \otimes\left(-h \hat{S}^{z}\right) \otimes \mathbb{I}+\mathbb{1} \otimes \mathbb{1}\left(\otimes \frac{I}{2} \hat{S}^{-} \otimes \hat{S}^{+}+\mathbb{1} \otimes \mathbb{I} \otimes \frac{J}{2} \hat{S}^{+} \otimes \hat{S}^{-}+\mathbb{I} \otimes 1 \otimes J^{z} \hat{S}^{t} \otimes \hat{S}^{z}\right. \\
& +\mathbb{L} \| \times \mathbb{U} \otimes\left(-h \hat{S}_{z}^{q}\right) \\
& \text { = full Hamiltonian for } 4 \text { sites! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { state 2: one } \hat{S}^{z} \text { just to the right }
\end{aligned}
$$

state 3: one $\mathbb{1} \otimes \hat{S}^{z}$ just to the right state 4: completed interaction somewhere to the right

$$
\begin{aligned}
& \hat{\omega}_{[1]}=\left(0, J_{1} \hat{S^{z}}, J_{2} \hat{s^{z}}, \hat{\mathbb{1}}\right) \\
& =\text { row } 4 \text { of } W[e]
\end{aligned}
$$

Check:

$$
\begin{aligned}
& \hat{W}^{[1]} \hat{W}^{[2]} \omega^{[3]}=\hat{W}^{(1)}\left(\begin{array}{cccc}
\hat{\mathbb{1}} & 0 & 0 & 0 \\
\hat{S}^{z} & 0 & 0 & 0 \\
0 & \hat{\mathbb{I}} & 0 & 0 \\
0 & J_{1} \hat{S}^{z} & J_{2} \hat{S}^{z} & \hat{\mathbb{I}}
\end{array}\right]\left(\begin{array}{l}
\hat{\mathbb{I}} \\
\hat{S}^{z} \\
0 \\
0
\end{array}\right) \\
& =\left(0, J_{1} \hat{S}^{z}, J_{2} \hat{S}^{z}, \hat{\mathbb{I}}\right)\left(\begin{array}{l}
\hat{\mathbb{I}} \otimes \hat{\mathbb{I}} \\
\hat{S}_{z} \otimes \hat{\mathbb{I}} \\
\hat{\mathbb{I}} \otimes \hat{S}^{z} \\
0+J_{1} \hat{S}^{z} \otimes \hat{S}^{z}+0+0
\end{array}\right) \\
& =J_{1} \hat{S}^{z} \otimes \hat{S}^{z} \otimes \hat{\mathbb{I}}+J_{2} \hat{S}^{z} \otimes \hat{\mathbb{I}} \otimes \hat{S}^{z}+\hat{\mathbb{L}} \otimes J_{1} \hat{S}_{z} \otimes \hat{S}_{z}
\end{aligned}
$$

How does an MPO act on an MPS in mixed-canonical representation w.r.t. site $l$ ? Consider
$\hat{o}=\left|\vec{\sigma}^{\prime}\right\rangle \prod_{l} W_{\{l]_{\sigma_{l}}}^{\sigma_{l}^{\prime}}\langle\vec{\sigma}|$
(1)


$$
\begin{equation*}
|\psi\rangle=\underbrace{\left|\alpha_{l}\right\rangle\left|\sigma_{l}\right\rangle\left|\alpha_{l-1}\right\rangle}_{\equiv|a\rangle} \underbrace{A^{\alpha_{l-1} \sigma_{l} \alpha_{l}}}_{A^{a}} \tag{2}
\end{equation*}
$$



Here $\{|a\rangle\}$ form a basis for the mixed-canonical representation. Express operator in this basis:

$$
\begin{equation*}
\hat{O}=\left|a^{\prime}\right\rangle O_{a}^{a^{\prime}}\langle a| \text {, with matrix elements } O_{a}^{a^{\prime}}=\left\langle a^{\prime}\right| \hat{O}|a\rangle \tag{3}
\end{equation*}
$$

then $\left|\psi^{\prime}\right\rangle=\hat{O}|\psi\rangle=\left|a^{\prime}\right\rangle A^{\prime a^{\prime}}$, with components $A^{\prime} a^{\prime}=O_{a}^{a^{\prime}} A^{a}$

$$
O_{a}^{a^{\prime}}=\left\langle a^{\prime}\right| \hat{O}|a\rangle
$$


$=L_{[l-1] \mu_{l} \alpha_{l-1}}^{\alpha_{l l-1}^{\prime}} W_{[l]}^{\mu_{l} \sigma_{l}^{\prime} \nu_{l}} \sigma_{l} R_{[l+1] \nu_{l} \alpha_{l}}^{\alpha_{l}^{\prime}}$
$L$ can be computed iteratively, for $\quad \ell^{\prime} \leq \ell-1$ :
(Similarly for $R$, for $\ell^{\prime} \geq \ell+1$ )
$L_{\left[\ell^{\prime}\right] \mu \alpha}^{\alpha^{\prime}}=A_{\left[\ell^{\prime}\right]_{\sigma^{\prime}-\bar{\alpha}}}^{+^{\alpha^{\prime}}} L_{\left[\ell^{\prime}-1\right] \bar{\mu} \bar{\alpha}}^{\alpha^{\prime}} A_{\left[\ell^{\prime}\right]}^{\bar{\alpha} \sigma}{ }_{\alpha} W_{\left[\ell^{\prime}\right]}^{\bar{\mu} \sigma^{\prime}} \mu \sigma$
For efficient computation, perform sums in this order:
(7)
$\left.\begin{array}{llll}\text { 1. Sum over } \bar{\alpha}^{\prime}, \sigma^{\prime} & \text { for fixed } \alpha^{\prime}, \bar{\alpha}, \bar{\mu}, \text {, ate cost } & (D \cdot d)\left(D^{2} \cdot D_{w}^{2} \cdot d\right) \\ \text { 2. Sum over } \bar{\mu}, \sigma & \text { for fixed } \alpha^{\prime}, \bar{\alpha}, \mu \text { at cost } & \left(D_{w} d\right) \cdot\left(D^{2} D_{w}\right) \\ \text { 3. Sum over } \bar{\alpha} & \text { for fixed } \alpha^{\prime}, \alpha, \mu \text { at cost } D \cdot\left(D^{2} D_{w}\right)\end{array}\right\} \sim D^{3}$ (9)

The application of MPO to MPS is then represented as:

$$
A^{\prime a^{\prime}}=O_{a}^{a^{\prime}} A^{a}
$$

$$
\begin{equation*}
\rightarrow A^{A^{\prime}}= \tag{II}
\end{equation*}
$$



