1. Motivation, review of $\operatorname{SU}(2)$ basics

Consider Heisenberg spin chain: $\hat{H}=J \sum_{l} \vec{S}_{l} \cdot \vec{S}_{l+1}$ has SU(2) symmetry.
Define $\quad \hat{S}_{\text {tot }}=\sum_{\ell} \vec{S}_{l}, \quad \hat{S}_{\text {tot }}^{z}, \quad \vec{S}_{\text {tot }}^{2}$ as sui) gerenters.
then $\quad\left[\hat{H}, \hat{S}_{\text {tot }}^{z}\right]=0, \quad\left[\hat{H}, \hat{S}_{\text {tot }}^{2}\right]=0$

Symmetry eigenstates can be labeled $|S, i ; s\rangle$ upper case S lower case s distinghuises states within multiplet 'multiplet label' distinguishes multiples having same spin S
with

$$
\begin{align*}
\hat{S}_{\text {hot }}^{z}|S, i ; s\rangle & =s|S, i ; s\rangle \tag{5}\\
\dot{S}_{n+1}^{2}|S, i ; s\rangle & =S(S+1)|S, i ; s\rangle \tag{6}\\
\left\langle S^{\prime}, i^{\prime} ; s^{\prime}\right| \hat{H}|S, i ; s\rangle & =S_{S}^{S^{\prime}} \delta_{s}^{s^{\prime}}[H \mid[s]]_{i}^{i^{\prime}} \tag{7}
\end{align*}
$$

For each S, we just have to find the reduced Hamiltonian $H_{[S]_{i}{ }^{i}}$ and diagonalize it.
Goal: find systematic way of dealing with multiplet structure in a consistent manner.

Reminder: SU(2) basics

$\operatorname{SU}(2)$ generators: $\quad\left[\hat{S}^{a}, \hat{S}^{b}\right]=i \varepsilon^{a b c} \hat{S}^{c} \quad, \quad \hat{S}^{ \pm}=\hat{S}^{x} t i \hat{S}^{y}$
$a, b, c \in\{x, y, z\}$

$$
\begin{equation*}
\left[\hat{s}^{z}, \hat{S}^{ \pm}\right]= \pm \hat{S}^{ \pm}, \quad\left[\hat{s}^{+}, \hat{s}^{-}\right]=2 \hat{S}_{z} \tag{9}
\end{equation*}
$$

Casimir operator:

$$
\begin{equation*}
\hat{\vec{S}}^{2}=\left(\hat{S}^{x}\right)^{2}+(\hat{S} y)^{2}+\left(\hat{S}^{z}\right)^{2} \tag{10}
\end{equation*}
$$

Commuting operators: $\quad\left[\hat{S}_{z}, \hat{\vec{S}}^{2}\right]=0$
Irreducible multiples:

$$
\begin{align*}
& \left.\left.\frac{\hat{S}^{2}}{S^{2}}(S, s)=S(S+1) \right\rvert\, S, s\right), \quad S=0,1 / 2,1,3 / 2 \ldots \tag{12}\\
& \left.\hat{S}_{2} \mid S, s\right)=S(S, s) \\
& S=-S,-S+1, \ldots, S
\end{align*}
$$

Dimension of multiples:

$$
\begin{equation*}
d_{S}=2 S+1 \tag{1,3}
\end{equation*}
$$

Highest weight state:

$$
\hat{S}^{+}|S, S\rangle=0
$$

Lowest weight state: $\quad \hat{S}^{-}|S,-S\rangle=0 \quad$ (b)

Irreducible representation (irrep) of symmetry group forms a vector space:

$$
\begin{equation*}
V^{S} \equiv \operatorname{span}\{|S, s\rangle \mid, S=-S, \ldots, S\} \tag{1}
\end{equation*}
$$

Decomposition of tensor product of two irreps into direct sum of irreps:

$$
V^{S} \otimes V^{S^{\prime}}=\sum_{\Theta \rightarrow S^{\prime \prime}=\left|S-S^{\prime}\right|}^{S+S^{\prime}} V^{S^{\prime \prime}} \quad=\sum_{\oplus S^{\prime \prime}} N^{S S^{\prime}} S^{\prime \prime} V^{S^{\prime \prime}}
$$

'Outer multiplicity' $N^{S} S^{\prime} S^{\prime \prime}$ is an integer specifying how often the irrep $S^{\prime \prime}$ occurs in the decomposition of the direct product $V^{S} \otimes V^{S^{\prime}}$.

For $S U(2)$, we have

$$
N^{S S^{\prime}} S^{\prime \prime}= \begin{cases}1 & \text { for }\left|S-S^{\prime}\right|<S^{\prime \prime}<S+S^{\prime} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

For other groups, e.g. $\operatorname{SU}(N \geq 3)$, the outer multiplicity can be >1.
Action of generators: $\quad \hat{C}^{\dagger}\left(\hat{S}_{1}^{a} \otimes \hat{\mathbb{I}}_{2}+\hat{\mathbb{I}}_{1} \otimes \hat{S}_{2}^{a}\right) \hat{C}=\sum_{\Theta S^{\prime \prime}} \hat{S}^{a}$
(4) dimensions:

$$
d_{S} \times d_{S}
$$

$d g^{\prime} x d s^{\prime}$
$d S^{\prime \prime} \times S_{S^{\prime \prime}}$
C transforms generators into block-diagonal form: For $S=1 / 2, S^{\prime}=1 / 2$:

The basis transformation \hat{C} is encoded in Clebsch-Gordan coefficients (CGCs):

$$
\begin{align*}
& \left.=\sum_{s, s^{\prime}} \mid S^{\prime}, s^{\prime}\right) \otimes|S, s\rangle \quad\left(C^{S, S^{\prime}} S^{\prime \prime}\right)^{s s^{\prime}}{ }_{s^{\prime \prime}} \tag{7}
\end{align*}
$$

States in new basis, $\left|S^{\prime \prime}, S^{\prime \prime}, S, S^{\prime}\right\rangle$, are eigenstates of $\left(\hat{S}_{1}+\vec{S}_{2}\right)^{2}$ with eigenvalue $S^{\prime \prime}\left(S_{+1}^{\prime \prime}\right)$

$"$	\hat{S}_{1}^{2}	$"$	S
$"$	\hat{S}_{2}^{2}	$"$	S^{\prime}
$"$	$\hat{S}_{1}^{z}+\hat{S}_{2}^{z}$	$"$	$S^{\prime \prime}$

(Bd)

An 'irreducible tensor operator' transforms as follows under a symmetry operation, $\hat{G} \in S U(z)$:

$$
\begin{align*}
& \hat{G} \hat{T}^{\left(S, s^{\prime}\right)} \hat{G}^{-1}=\sum_{s=-S}^{N} \underbrace{D(G)^{s^{\prime}}}_{\text {spin } S \text { matrix representation of SU(2) }} \hat{T}^{N}(S, s) \tag{1}\\
& \hat{G} \mid S, s) \rightarrow D(g)_{s}^{s^{\prime}}|S, s\rangle
\end{align*}
$$

Example 1: Heisenberg Hamiltonian is $S U(2)$ invariant, hence transforms in $S=0$ representation of $S U(2)$:
(scalar)
$\hat{g} \hat{H} \hat{G}^{-1}=\hat{H}$
Example 2: $\operatorname{SU}(2)$ generators, $\hat{\dot{S}}^{+}, \hat{S}^{-}, \hat{S}^{z}$, transform in $S=1$ (vector) representation of $\operatorname{SU}(2)$:

$$
\begin{equation*}
\hat{S}^{(S=1, S)}=\left(\frac{1}{\sqrt{2}} \hat{S}^{+}, \hat{S}^{z}, \frac{1}{\sqrt{2}} \hat{S}^{-}\right)^{\top} \tag{3}
\end{equation*}
$$

Wigner-Eckardt theorem

Every matrix element of a tensor operator factorizes as 'reduced matrix elements' times 'CGC':

$$
\begin{equation*}
\langle S, i ; s| \hat{T}^{\left(S^{\prime}, s^{\prime}\right)}\left|S^{\prime \prime}, i^{\prime \prime} ; S^{\prime \prime}\right\rangle=\left(T^{S S^{\prime}} S^{\prime \prime}\right)_{i^{\prime \prime}}^{i} \underbrace{\left\langle N^{S}, S_{i} S^{\prime}, s^{\prime} \mid S^{\prime \prime}, S^{\prime \prime}\right\rangle}_{\text {CGCs encode sum rules: }} \tag{4}
\end{equation*}
$$

In particular, for Hamiltonian, which is a scalar operator: $\quad\left(S^{\prime}=0, s^{\prime}=0\right)$

We will see: a factorization similar to (4) also holds for A-tensors of an MPS!

$$
\begin{aligned}
& A^{(S, i ; s),\left(S^{\prime}, s^{\prime}\right)}\left(S^{\prime \prime}, i^{\prime \prime}, s^{\prime \prime}\right)=\left(\tilde{A^{\prime}}, S^{\prime} S^{\prime \prime}\right)_{i^{\prime \prime}}^{i i^{\prime}}\left(C^{S S^{\prime}} S^{\prime \prime}\right)^{s, s^{\prime}} s^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& =
\end{aligned}
$$

Why does A-matrix factorize? Consider generic step during iterative diagonalization:
Suppose Hamiltonian for sites 1 to ℓ has been diagonalized:

Add new site, with Hamiltonian for sites 1 to ℓ_{+1} expressed in direct product basis of previous eigenbasis and physical basis of new site:

Transform to symmetry eigenbasis, ie. make unitary tranformation into direct sum basis, using CGCs:

$$
\begin{align*}
& \text { sums over all repeated indices implied: } \tag{9}
\end{align*}
$$

$$
\begin{align*}
& \text { By Wigner-Eckardt theorem: } \tag{10}\\
& =\delta^{\zeta^{\prime \prime}} s^{\prime \prime} \delta^{\hat{s}^{\prime \prime}}{ }_{s^{\prime \prime}}\left[H_{\left[S^{\prime \prime}\right]}\right]_{i^{\prime \prime}}^{\tilde{\tau}^{\prime \prime}} \\
& \sum \text { block labeled by } S^{n} \\
& \text { H couples multiples } \tilde{q}^{\prime \prime}, i^{\prime \prime} \text { from same symmetry sector, } \\
& \text { states within each multiple are left unchanged/not scrambled }
\end{align*}
$$

Diagrammatic depiction is more transparent / less cluttered:

Now diagonalize and make unitary transformation into energy eigenbasis:
composite index: $i^{\prime \prime}=\left(\bar{i}, i^{\prime}\right)$

Now diagonalize and make unitary transformation into energy eigenbasis:
composite index: $i^{\prime \prime}=\left(\bar{\imath}, i^{\prime}\right)$

Combined transformation from old energy eigenbasis to new energy eigenbasis:

A-matrix factorizes, into product of reduced A-matrix and CGC !! $A=\tilde{A} \cdot C$

$$
V^{1 / 2} \otimes V^{1 / 2}=V^{0} \oplus V^{1} \quad 0 \times \xrightarrow[1 / 2]{\sim} \xrightarrow[h_{1 / 2}]{\rightarrow} 0 \oplus 1
$$

Local state space for spin $1 / 2$:

$$
\begin{equation*}
|\uparrow\rangle=|1 / 2,1 / 2\rangle, \quad|\downarrow\rangle=|1 / 2,-1 / 2\rangle . \tag{1}
\end{equation*}
$$

Singlet:

$$
\begin{align*}
|S, s\rangle=|0,0\rangle & =\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \tag{2}\\
& =\frac{1}{\sqrt{2}}(|1 / 2,1 / 2 ; 1 / 2,-1 / 2\rangle-|1 / 2,-1 / 2 ; 1 / 2,1 / 2\rangle) \tag{3}
\end{align*}
$$

Triplet:

Transformation matrix for decomposing the direct product representation into direct sum:

Check
Let us transform some operators from direct product basis into direct sum basis:
$S=1 / 2$ repro. of $S U(2)$ generators: $\quad S_{1}^{+}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad S_{1}^{-}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), \quad S_{1}^{z}=\left(\begin{array}{ll}1 / 2 & -\varepsilon_{2}\end{array}\right)(7)$

In direct product basis, the generators have the form
$S^{+}=S_{1}^{+} \otimes L_{2}+\mathbb{1} \otimes S_{2}^{+}=\left[\begin{array}{ll}0 & 1 \cdot(1,1) \\ 0 & 0\end{array}\right]+\left[\begin{array}{lll}1 \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) & 0 \\ 0 & 1 \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
(8)
$S^{-}=S_{1} \otimes I_{2}+\mathbb{1}_{1} \otimes S_{2}=\left[\begin{array}{ll}0 & 0 \\ 1\left(\begin{array}{l}1\end{array}\right) & 0\end{array}\right)+\left(\begin{array}{cc}1 \cdot\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right. & 0 \\ 0 & 1 \cdot\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0\end{array}\right)$
$S^{z}=S_{1}^{z} \otimes I_{2}+\mathbb{1} \otimes S_{2}^{z}=\frac{1}{2}\left(\begin{array}{cc}1 \cdot\left(\begin{array}{ll}1 & 1\end{array}\right. & 0 \\ 0 & -1 \cdot(1,)\end{array}\right)+\frac{1}{2}\left[\begin{array}{ccc}1 \cdot\left(\begin{array}{cc}1 & -1\end{array}\right. & 0 \\ 0 & 1 \cdot(1-2)\end{array}\right]=\left[\begin{array}{ccc}1+1 & & \\ & 1-1 & \\ & & -1+1 \\ & & -1-1\end{array}\right]=\left[\begin{array}{ccc}1 & & \\ & 0 & \\ & 0 & -1\end{array}\right]$

Transformed into new basis, all operators are block-diagonal:

$$
\begin{align*}
& \tilde{S}^{z}=C_{\{2]}^{t} S^{z} C_{[2]}=\left(\begin{array}{cccc}
0 & r_{2} & y_{2} & 0 \\
1 & 0 & 0 & 0 \\
0 & y_{\sqrt{2}} & -r_{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 / \sqrt{2} & 0 & y_{\sqrt{2}} & 0 \\
1 / \sqrt{2} & 0 & -y_{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \tag{3}
\end{align*}
$$

These 4×4 matrices indeed satisfy

$$
\begin{equation*}
\left[\tilde{s}^{z}, \tilde{s}^{ \pm}\right]= \pm \tilde{s}^{t},\left[\tilde{s}^{+}, \tilde{s}^{-}\right]=2 \tilde{S}^{z} \tag{14}
\end{equation*}
$$

So, they form a representation of the $S U(2)$ operator algebra on the reducible space $V^{\circ} \oplus V^{1}$
Futhermore, we identify: on $V^{0}: \quad S^{+}=S^{-}=S^{z}=0$

$$
\text { on } V^{\prime}: \quad S^{+}=\sqrt{2}\left(\begin{array}{lll}
0 & 1 & 0 \tag{15}\\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad S^{-}=\sqrt{2}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad S^{z}=\left(\begin{array}{cc}
1 \\
0 & -1
\end{array}\right)
$$

Now consider the coupling between sites 1 and $2, \quad \vec{S}_{1} \cdot \vec{S}_{2}$. How does it look in the new basis?

$$
\begin{align*}
& S_{1}^{z} \otimes S_{2}^{z}=\frac{1}{4}\left(\begin{array}{ccc}
1 & & \\
-1 & -1
\end{array}\right) \Rightarrow \widetilde{S_{1}^{z} \otimes S_{2}^{z}}=C_{[2]}^{+}\left(S_{1}^{z} \otimes S_{2}^{z}\right) C_{[2]}=\frac{1}{4}\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{17}\\
& \frac{1}{2} S_{1}^{+} \otimes S_{2}^{-}=\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \Rightarrow \frac{1}{2} \widetilde{S_{1}^{+} \otimes S_{2}^{-}}=C_{[2]}^{+} \frac{1}{\frac{1}{2}}\left(S_{1}^{+} \otimes(8) S_{2}^{-}\right) C_{\{2]}=\frac{1}{4}\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { (18) } \\
& \frac{1}{2} S_{1}^{-} \otimes S_{2}^{+}=\frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \Rightarrow \widetilde{\frac{1}{2}} \widetilde{S_{1}^{-} \otimes S_{2}^{+}}=C_{[2]}^{+}\left(S_{1}^{-} \otimes S_{2}^{+}\right) C_{[2]}=\frac{1}{4}\left(\begin{array}{cccc}
-1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \tag{19}
\end{align*}
$$

These matrices are not block-diagonal, since the operators represented by them break SU(2) symmetry.
But their sum, yielding $\vec{S}_{1} \cdot \vec{S}_{2}$, is block-diagonal:

$$
C_{[2]}^{+}\left(\vec{S}_{1} \otimes \vec{S}_{2}\right) C_{[2]}=C_{[2]}^{+}\left(S_{1}^{z} \otimes S_{2}^{z}+\frac{1}{2}\left[S_{1}^{+} \otimes S_{2}^{-}+S_{1}^{-} \otimes S_{2}^{+}\right]\right) C_{[2]}=\frac{1}{4}\left(\begin{array}{c|ccc}
-3 & 0 & 0 & 0 \tag{20}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The diagonal entries are consistent with the identity
$\left.\vec{S}_{1} \cdot \vec{S}_{2}=\frac{1}{2}\left[\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}-\vec{S}_{1}^{2}-\vec{S}_{2}^{2}\right)\right]=\left\{\begin{array}{lll}\frac{1}{2}\left(0.1-1 / 2 \cdot 3 / 2-r_{2} \cdot 3 / 2\right)=-3 / 4 & \text { for } & S^{\prime \prime}=0 \\ \frac{1}{2}(1 \cdot 2-1 / 2 \cdot 3 / 2-1 / 2 \cdot 3 / 2)=1 / 4 & \text { for } & S^{\prime \prime}=1\end{array}\right\}$

In section Sym-II. 5 we will need $\quad \mathbb{1}: \vec{S}_{2} \cdot \vec{S}_{3}$. In preparation for that, we here compute $\mathbb{1}_{1} \otimes S_{z}^{z}=\frac{1}{2}\left(\begin{array}{lll}1 & & \\ -1 & & \\ & +1 & -1\end{array}\right) \Rightarrow \widetilde{\mathbb{1}_{1} \otimes S_{2}^{z}}=C_{[3]}^{+}\left(\mathbb{1} \otimes \otimes S_{2}^{z}\right) C_{[2]}=\frac{1}{2}\left(\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$
1.(1) $S_{2}^{+}=\frac{1}{2}\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \Rightarrow \widetilde{\mathbb{1}_{1} \otimes(2) S_{2}^{+}}=C_{[2]}^{+}\left(\mathbb{1},\left(* S_{2}^{+}\right) C_{[\eta]}=\frac{1}{S_{2}}\left(\begin{array}{cccc}0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)\right.$
$\mathbb{1}_{1} \otimes S_{2}^{-}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) \Rightarrow \widetilde{\mathbb{1}_{1} \otimes S_{2}^{-}}=C_{[2]}^{+}\left(\mathbb{1}_{1} \otimes S_{-}^{+}\right) C_{[2]}=\widetilde{\frac{1}{\sqrt{2}}}\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0\end{array}\right)$

Another example: $V^{\prime} \oplus V^{1 / 2} \quad$ (not relevant for spin- $1 / 2$ chain)

$$
\begin{align*}
& S_{1}^{z} \otimes S_{2}^{z}=\frac{1}{2}\left(\begin{array}{ccc}
1 \cdot(-1) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0-1\left(l^{-1}\right)
\end{array}\right) \Rightarrow C^{t}\left(S_{1}^{z} \otimes S_{2}^{z}\right) C=S_{1}^{z} \otimes S_{2}^{z}=\left(\begin{array}{cccccc}
-\frac{1}{3} & 0 & 0 & -\frac{1}{\sqrt{18}} & 0 & 0 \\
0 & -1 / 3 & 0 & 0 & \frac{1}{\sqrt{18}} & 0 \\
0 & 0 & 1 / 2 & 0 & 0 & 0 \\
-\frac{1}{\sqrt{18}} & 0 & 0 & -1 / 6 & 0 & 0 \\
0 & \frac{1}{\sqrt{17}} & 0 & 0 & -1 / 6 & 0 \\
0 & 0 & 8 & 0 & 0 & 12
\end{array}\right) \tag{25}\\
& \frac{1}{2} S_{1}^{+} \otimes S_{2}^{-}=\frac{1}{2}\left(\begin{array}{ccc}
0 & \sqrt{2}\binom{0}{10} & 0 \\
0 & 0 & \sqrt{2}(00) \\
0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad \frac{1}{2} \widetilde{S_{1}^{4} \otimes S^{-}}=\left(\begin{array}{cccccc}
-\frac{1}{3} & 0 & 0 & \sqrt{2 / 9} & 0 & 0 \\
0 & -1 / 3 & 0 & 0 & \sqrt{18} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-\sqrt{16} & 0 & 0 & 1 / 3 & 0 & 0 \\
0 & -\sqrt{29} & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)(26) \\
& \frac{1}{2} S_{1}^{-} \otimes S_{2}^{+}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
\sqrt{2}(0,0) \\
0 & \sqrt{2}\binom{01}{00} & 0
\end{array}\right) \quad \approx \stackrel{\frac{1}{2}}{\sim} \overparen{S_{1}^{-} \otimes S_{2}^{+}}=\left(\begin{array}{cccccc}
-\frac{1}{3} & 0 & 0 & -\frac{1}{\sqrt{18}} & 0 & 0 \\
0 & -1 / 3 & 0 & 0 & -\frac{2}{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2 / 4} & 0 & 0 & 1 / 3 & 0 & 0 \\
0 & \sqrt{17} & 0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \tag{27}\\
& \text { The sum of these three terms yields: } \\
& \underset{\vec{S}_{1} \otimes \vec{S}_{2}}{\sim}=\left(\begin{array}{lllll}
-1 & & & \\
-1 & & & \\
\hline & 1 / 2 & & \\
& & 1 / 2 & & \\
& & & 1 / 21 / 2
\end{array}\right) \tag{28}
\end{align*}
$$

The diagonal entries are consistent with the identity
(29)

$$
\left.\vec{S}_{1} \cdot \vec{S}_{2}=\frac{1}{2}\left(\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}-\vec{S}_{1}^{2}-\bar{S}_{2}^{2}\right)\right]=\left\{\begin{array}{lll}
\frac{1}{2}\left(\frac{1}{2} \cdot \frac{3}{2}-1 \cdot 2-1 / 2 \cdot 3 / 2\right)=-1 & \text { for } S^{\prime \prime}=1 / 2 \\
\frac{1}{2}\left(\frac{3}{2} \cdot \frac{5}{2}-1 \cdot 2-1 / 2 \cdot 3 / 2\right)=1 / 2 & \text { for } & S^{\prime \prime}=3 / 2
\end{array}\right\}
$$

$$
\begin{align*}
\left(V^{0} \oplus V^{\prime}\right) \otimes V^{1 / 2}=V^{1 / 2} \oplus V^{1 / 2} \oplus V^{3 / 2} \quad 0 \rightarrow \mid 1 / 2
\end{align*}
$$

Let us find $H_{12}+H_{23}=\underbrace{\bar{S}_{1} \cdot \bar{S}_{2}} \cdot \mathbb{1}_{3}+\mathbb{1}_{1} \cdot \bar{S}_{2} \cdot \vec{S}_{3} \quad$ in this basis.
Combining (Sym-II. $\mathscr{S}_{,}(17-19)$) $\otimes \mathbb{1}_{3} \quad$ with $\left(\overrightarrow{\text { Sym-II. } \mathscr{S}_{,}(22-24)}\right) \cdot \overrightarrow{\mathrm{S}}_{3}$, we readily obtain

$$
\begin{align*}
& \widetilde{\vec{S}_{1} \cdot \vec{S}_{2} \cdot \mathbb{1}_{3}}+\widetilde{\mathbb{1}_{1} \cdot \vec{S}_{2} \cdot \vec{S}_{3}}=C_{[3]}^{+}\left(\widetilde{\vec{S}_{1} \cdot \vec{S}_{2}} \cdot \mathbb{1}_{3}+\widetilde{\mathbb{I}_{1} \cdot \vec{S}_{2}} \cdot \vec{S}_{3}\right) C_{[3]} \tag{10}\\
& S=1 / 2 \quad S=3 / 2
\end{align*}
$$

$$
=\left(\begin{array}{ll|l}
\begin{array}{|cc|}
\hline-3 / 4 & \sqrt{3} / 6 \\
\sqrt{3} / 4 & -1 / 6 \\
\hline
\end{array} & 1_{2 \times 2} & \\
\hline & \boxed{\frac{6}{2}} 1_{4}
\end{array}\right)
$$

Beautifully blocked, and in agreement with Wigner-Eckardt theorem, cf. Sym-II. 3 (5'):

$$
\begin{equation*}
\left\langle\hat{S}^{\prime \prime}, \hat{i}^{\prime \prime} ; \tilde{s}^{\prime \prime}\right| \hat{H}\left|S^{\prime \prime}, i^{\prime \prime} ; s^{\prime \prime}\right\rangle=\left(H_{[S]}\right)_{i^{\prime \prime}}^{i^{\prime \prime}} \delta_{s^{\prime \prime}}^{\widehat{S^{\prime \prime}} \delta_{s^{\prime \prime}}^{s}} \tag{13}
\end{equation*}
$$

with reduced matrix elements

$$
H_{[1 / 2]}=\left(\begin{array}{cc}
-3 / 4 & \sqrt{3} / 4 \tag{14}\\
\sqrt{3} / 4 & -1 / 4
\end{array}\right), \quad H_{[3 / 2]}=\frac{1}{2}
$$

General notation: $\quad|Q, q\rangle \equiv|S, s\rangle$ for bonds, $\quad|R, r\rangle \equiv|S, s\rangle \quad$ for physical legs.

To avoid proliferation of factors of $1 / 2$, Weichselbaum uses the following notation:

$$
\begin{equation*}
Q=2(\text { spin })=0,1,2, \ldots, \quad q=2(\text { spin projection })=-Q, \ldots, Q \tag{2}
\end{equation*}
$$

We will stick with standard notation, though.

Sites 0 and 1

$$
\begin{equation*}
Q_{0}=\underset{\substack{R_{R_{1}}=r_{2}}}{\tilde{\mathbb{I}}_{11}} Q_{1}=1 / 2 \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \mathbb{1}_{[1]}: \doteq\left\{\begin{array}{lccccc}
\begin{array}{c}
\text { record } \\
\text { index } \nu
\end{array} & \begin{array}{c}
\text { bond } 0 \\
Q_{0}
\end{array} & \begin{array}{c}
\text { site } 1 \\
R_{1}
\end{array} & \begin{array}{c}
\text { bond } 1 \\
Q_{1}
\end{array} & \begin{array}{c}
\text { dimensions } \\
d_{Q_{0}} \times d R_{1}, d_{Q_{1}}
\end{array} \\
\hline 1 & 0 & 1 / 2 & Y_{2} & 1 \times 2,2 & \text { data }
\end{array} \begin{array}{l}
\text { aGC } \\
1
\end{array}\right. \tag{4}
\end{align*}
$$

Since Heisenberg Hamiltonian contains only two-site terms, Hamiltonian for a single

$$
\begin{array}{cccc}
Q_{1} & H_{[Q,]} & \text { CGC } & \text { CGC-dim } \\
\hline 1 / 2 & 0 & 1 & 2
\end{array}
$$

(s) site is trivially $=0$:

Sites 1 and 2

for both first matrix and second block matrix, rows are labeled by $\left(Q_{1}, R_{2}\right)$, columns by Q_{2}, i_{2}.

$$
\tilde{I}_{[z]}: \doteq\left\{\begin{array}{lcccccc}
\begin{array}{l}
\text { record } \\
\text { index } \nu
\end{array} & \begin{array}{c}
\text { bond } 1 \\
Q_{1}
\end{array} & \begin{array}{c}
\text { site 2 } \\
R_{2}
\end{array} & \begin{array}{c}
\text { bond } 2 \\
Q_{2}
\end{array} & \begin{array}{l}
\text { dimensions } \\
d_{Q_{1} \times} \times d_{2}, d Q_{2}
\end{array} & \text { data } & \text { CGC } \\
\hline 1 & 1 / 2 & 1 / 2 & 0 & 2 \times 2,1 & 1 & \square \\
2 & 1 / 2 & 1 / 2 & 1 & 2 \times 2,3 & 1 & \square
\end{array}\right.
$$

(9)

Hamiltonian for sites 1 to 2 [see Sym-II.5(20)]:

$$
\widetilde{\vec{S}_{1}} \cdot \vec{S}_{2}=\left(\begin{array}{c|ccc}
-3 / 4 & 0 & 0 & 0 \tag{8}\\
\hline 0 & \boxed{ } \\
0 & 1 / 4 & \mathbb{1}_{3} \\
0 & &
\end{array}\right]
$$

$$
\begin{array}{cccc}
Q & \left.H_{\left[Q_{2}\right]}\right] & \text { CGC } & \text { CGC-dim } \\
\hline 0 & -3 / 4 & \mathbb{I}_{1} & 1 \\
1 & 1 / 4 & \mathbb{I}_{3} & 3
\end{array}
$$

$$
\begin{equation*}
Q_{2}=0 \oplus 1 \xrightarrow[{T_{R_{3}=1 / 2}^{\tilde{I}_{[3]}} Q_{3}=Y_{2 \oplus 1 / 2 \oplus 3 / 2}}]{\prod_{2}} \tag{9}
\end{equation*}
$$

for both first matrix and second block matrix, rows are labeled by $\left(Q_{2}, R_{3}\right)$, columns by $\left(Q_{3}, i_{3}\right)$.

3	1	$1 / 2$	$3 / 2$	3×2,	4	1	\square

Hamiltonian for sites 1 to 3 [see Sym-II.5(12)]:

$$
\widetilde{\widetilde{S_{1}} \cdot \vec{S}_{2} \cdot 1_{3}}+\widetilde{\mathbb{1}_{1} \cdot \vec{S}_{2} \cdot \vec{S}_{3}}=\left(\begin{array}{ll}
\left(\begin{array}{cc}
-3 / 4 & \sqrt{3} / 4 \\
\sqrt{3} / 4 & -4 / 4
\end{array}\right) \otimes \mathbb{1}_{2} & \\
\hline \hline & \boxed{1}\left(\otimes \mathbb{1}_{4}\right.
\end{array}\right)
$$

This information can be stored in the format

eigenenergies do not depend on degenerate multiples!

Diagonalize H :

$$
\begin{equation*}
\left.H_{\left[Q_{3}\right]}\left|Q_{3}, \overline{r_{3}} ; q_{3}\right\rangle=E_{\left\{Q_{8}\right] \bar{r}_{3}} \mid Q_{3}, \overline{r_{3}} ; q_{3}\right) \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
\left|Q_{3}, i_{3} ; q_{3}\right\rangle=\mid Q_{3}, i_{3} ;\left\{_{3}\right\rangle \underbrace{U_{\left[Q_{3}\right]}^{i_{3}} \bar{i}_{3}} \tag{15}
\end{equation*}
$$

 for both first matrix and second block matrix rows are labeled by $\left(Q_{2}, R_{3}\right)$, columns by (Q_{3}, i_{3}).

$$
=
$$

for third matrix, rows are labeled by $\left(Q_{3}, i_{3}\right)$, columns by $\left(Q_{3}, \bar{L}_{3}\right)$.
 columns by $\left(Q_{3}, \imath_{3}\right)$.

$$
\text { sum on }\left(Q_{3}, i_{3}\right) \text { is implied, yielding matrix multiplication: }
$$

CGC factor is merely a spectator

$$
\text { ⒈U }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \times\left(\begin{array}{lll}
& 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)=A
$$

This illustrates the general statement: in the presence of symmetries, A-tensors factorize:

$$
\begin{equation*}
A^{(Q, i ; q),(R, j ; \tau)}(s, k ; s)=\left(A^{Q R} s\right)_{k}^{i j}\left(C^{Q R} s\right)^{q r} s \tag{7}
\end{equation*}
$$

