NRG: [Wilson1975], [Toth2008], [Weichselbaum2012b]
Qspace
DMRG: [McCulloch2001], [McCulloch2002]
General tensor network: Singh, Pfeiffer, Vidal [Singh2010]
Goal: exploit symmetries of Hamiltonian!
If Hamiltonian has symmetries, $[\hat{H}, \hat{Q}]=0$, then: (1) ${ }^{\text {generator of symmetry group }}$

- \hat{Q} and \hat{H} can be diagonalized simultaneously:

$$
\begin{equation*}
\hat{Q}|Q, \bar{\imath}\rangle=Q|Q, \bar{\imath}\rangle, \quad \hat{H}|Q, \stackrel{\sim}{2}\rangle=E_{Q, \bar{l}}^{\text {overbear will indicate ene }}|\theta, \bar{\eta}\rangle \tag{z}
\end{equation*}
$$

- H connects only states with same Q, \Rightarrow blockdiagonal

- for non-Abelien symmetries, eigenstates from degenerate multiplets,
$\left|Q_{q, \bar{\imath}}\right\rangle$, where q distinguishes states within multiples, and $\bar{\imath}$ enumerates distinct multiples.

Exploiting these structures reduces numerical costs!

1. Example, Abelian symmetry: XXZ-chain (spin $1 / 2$)

$$
\begin{equation*}
H=\sum_{l} \frac{J}{2}\left(S_{l}^{+} S_{l+1}^{-}+S_{l}^{-} S_{l+1}^{+}\right)+\sum_{l} J_{z} S_{l}^{z} S_{l+1}^{z} \tag{3}
\end{equation*}
$$

Total spin, $\hat{S}_{\text {tot }}^{z}=\sum_{l} \hat{S}_{l}^{z}$, is conserved: $\left[\hat{H}, \hat{S}_{\text {tot }}^{z}\right]=0 \quad$ 'Abelian symmetry'
This is obvious by inspection. But let us check explicitly:

$$
\hat{Q}=\begin{align*}
& \hat{S}_{k t}^{t} \quad \text { "charge" } \tag{4}\\
& \text { to aroid } 1 / 2 \ldots .
\end{align*}
$$

One site: $\quad \hat{S}_{l}^{t}={ }_{\downarrow}\left(\begin{array}{ll}\hat{1} & \downarrow \\ 0 & 1 \\ 0 & 0\end{array}\right) \quad \hat{S}_{l}^{-}=\begin{aligned} & \uparrow \\ & \downarrow\end{aligned}\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \quad \hat{S}_{l}^{z}=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right)$

Consider direct-product space of sites 1 and 2, and its Hamiltonian H_{12}

$$
\begin{aligned}
& \hat{S}_{1}^{z}+\hat{S}_{2}^{z}=\hat{S}_{1}^{z} \otimes \hat{I}_{2}+\hat{\eta}_{1} \otimes \hat{S}_{z}^{z}
\end{aligned}
$$

$$
\begin{align*}
& H_{l 2} \tag{8}
\end{align*}
$$

Two observations:

- $\left[\hat{S}_{\text {tot }}^{z}, \hat{H}_{12}\right]=0, \Rightarrow \hat{H}_{12}$ does not mix states with different values of $S_{\text {tot }}^{z}$.
- Eigenstates of \hat{H}_{12} will carry $\hat{S}_{\text {tot }}^{z}$-eigenvalue as one of their quantum numbers.

Programming challenge: exploit this 'sparse' structure to save memory and computation time! We don't want to store large matrices with many zeros! Instead, store only relevant information!

Bookkeeping Use $Q=2$ (Eigenvalue of $\hat{S}_{\text {fof }}^{z}$) as label: Label states as $|Q, i\rangle$, where $\quad i \quad$ enumerate states with same Q.

Record of states needed
to describe 2 sites:
no sites

record index ν	Q	i	explicit representation	state
1	Z	1	1	$\mid \uparrow \uparrow)$
2	0	1	$(1,0)^{\top}=\binom{1}{0}$ $(0,1)^{\top}=\binom{0}{1}$	$\|\uparrow, \downarrow\rangle$
$1 \downarrow, \uparrow)$				
3	-2	1	1	$\|\downarrow \downarrow\rangle$

Record of sectors ('blocks') of Hamiltonian for 2 sites:

The task of diagonalizing Hamiltonian can be split into three separate tasks (two of which are trivial).

record index ν	Q^{\prime}	Q	$\left\langle Q^{\prime}\right\| H\|Q\rangle \sim$
1	2	2	$\frac{1}{4} J_{z}$
2	0	0	$\frac{J}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)-\frac{1}{4} J_{z}\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
3	-2	-2	$\frac{1}{4} J_{z}$

Consider direct-product space of sites 1 and 2 and 3 :

Consider direct-product space of sites 1 and 2 and 3 :

$$
\begin{aligned}
& \hat{S}_{b t}^{z}=\hat{S}_{1}^{z}+\hat{S}_{2}^{z}+\hat{S}_{3}^{z}=\hat{S}_{1}^{z} \otimes \hat{\mathbb{I}}_{2} \otimes \hat{\mathbb{I}}_{3}+\hat{\mathbb{I}}_{1} \otimes \hat{S}_{22}^{z} \otimes \hat{\mathbb{I}}_{3}+\hat{\mathbb{I}}_{1} \otimes \hat{\mathbb{H}}_{2} \otimes \hat{S}_{3}^{z}
\end{aligned}
$$

$$
\begin{align*}
& \frac{\hat{H}_{\text {spin-flip }}}{J / 2}=\hat{S}_{1}^{+} \hat{S}_{2}^{-} \hat{\mathbb{H}}_{3}+\hat{S}_{1} \hat{S}_{2}^{+} \hat{\mathbb{I}}_{3}+\hat{1} \hat{\boldsymbol{S}}_{2}^{+} \hat{S}_{3}^{-}+\hat{\mathbb{1}}_{1} \hat{S}_{2}^{-} \hat{S}_{3}^{+} \tag{17}
\end{align*}
$$

$$
\begin{align*}
& \begin{array}{llllllll}
3 / 2 & r_{2} & Y_{2} & -y_{2} & r_{2} & -1 / 2 & -1 / 2 & -3 / 2
\end{array} \tag{18}
\end{align*}
$$

$$
\begin{aligned}
& \left.=\begin{array}{c}
T \uparrow \uparrow \\
\uparrow \uparrow l \\
\Gamma L P \\
\hat{T L} \\
L T \uparrow \\
L T_{d} \\
L L \uparrow
\end{array} \left\lvert\, \begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right.\right)
\end{aligned}
$$

direct-product scheme
does not automatically produce a manifest block structure
to arrive at a block structure,
switch rows: $4 \leftrightarrow$ s
and columns: $4 \longleftrightarrow 5$

there are several ways to obtain the same $S_{\text {fot }}^{z}$:

only connects states within block identified by unique total $S_{\text {tot }}^{z}$!

$$
\begin{equation*}
\frac{f^{z z}}{J_{z}}=\hat{S}_{1}^{z} \hat{S}_{2}^{z} \hat{\mathbb{1}}+\hat{\mathbb{1}}_{1} \hat{S}_{2}^{z} \hat{S}_{3}^{z} \tag{22}
\end{equation*}
$$

$$
=\quad \frac{1}{4}\left(\begin{array}{c:ccc:cccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \begin{array}{cccccccc}
3 / 2 & r_{2} & y_{2} & \varphi_{2} & -\gamma_{2} & -\varphi_{2} & -1 / 2 & -3 / 2 \\
\uparrow 1 \uparrow & \uparrow \uparrow \downarrow & \uparrow \downarrow \uparrow & \downarrow \uparrow & \uparrow \downarrow \downarrow & \downarrow \uparrow \downarrow & \downarrow \downarrow & \downarrow \downarrow \downarrow
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { After switch, operators are block-diagonal: }
\end{aligned}
$$

$=\frac{1}{4}\left|\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\end{array}\right|$

Bookkeeping
Use $\quad Q=z$ (Eigenvalue of $S_{\text {tot }}^{z}$) as label:
Record of states needed to describe 3 sites:

record index ν	Q	i	explicit representation	state
1	3	1	1	$\|\uparrow \uparrow \uparrow\rangle$
		1	$(1,0,0)^{\top}$	$\|\uparrow \uparrow \downarrow\rangle$
2	1	2	$(0,1,0)^{\top}$	$\|\uparrow \downarrow \uparrow\rangle$
		3	$(0,0,1)^{\top}$	$\|\downarrow \uparrow \uparrow\rangle$
		1	$(1,0,0)^{\top}$	$\|\uparrow \downarrow \downarrow\rangle$
3	-1	2	$(0,1,0)^{\top}$	$\mid \downarrow \uparrow \downarrow)$
		3	$(0,0,1)^{\top}$	$\|\downarrow \downarrow \uparrow\rangle$
4	-3	1	1	$\|\downarrow \downarrow\rangle\rangle$

Record of sectors ('blocks') of Hamiltonian for 3 sites:

The task of diagonalizing Hamiltonian can be split into four separate tasks (two of which are trivial).

record index ν	Q^{\prime}	Q	$\left\langle Q^{\prime}\right\| H\|Q\rangle \sim \delta_{Q Q}{ }^{\prime}$
1	3	3	$2 \cdot 1 / 4 J_{z}$
2	1	1	$\frac{J}{2}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)+\frac{1}{4} J_{z}\left(\begin{array}{ll}0 \\ -2 \\ -2\end{array}\right)$
3	-1	-1	$\frac{J}{2}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)+\frac{1}{4} J_{z}\left(\begin{array}{ll}0 \\ -2 & 0\end{array}\right)$
4	-3	-3	$2 \cdot 1 / 6 J_{z}$

Labelling scheme for Abelian symmetry

Suppose $[\hat{H}, \hat{Q}]=0 \quad$, and \hat{Q}-eigenstates are uniquely labeled by a single quantum number:

$$
\begin{equation*}
\hat{Q}|Q\rangle=Q|Q\rangle \quad \text { (e.g. eigenstates of } S_{\text {tot }}^{z} \text {) } \tag{at}
\end{equation*}
$$

Then all states in Hilbert space can be labeled by following scheme:

- 'Q-label' or 'symmetry label': Q, eigenvalues of \hat{Q}
- 'i-label' or 'multiplet label': i, enumerates different irreducible multiples having the same \mathcal{Q}

For an abelian symmetry each 'multiplet' contains just a single state, hence Q suffices for labeling states. (For nonabelian symmetry, it could contain several states, hence another internal label is needed: $|Q q, i\rangle$) In group theory language: $|0, i\rangle$ is a 'reducible multiplet' of \hat{Q}, the index i serves to 'reduce' it.

We need systematic, automatable way of generating all states $|Q, i\rangle$ and computing matrix elements

$$
\begin{equation*}
H_{[Q] i}^{i^{\prime}}=\left\langle Q, i^{\prime}\right| \hat{H}|Q, i\rangle \tag{31}
\end{equation*}
$$

Diagonalizing $H_{[Q]}$ yields symmetry- and energy eigenstates, $|Q, \bar{\imath}\rangle=|Q, i\rangle U_{[Q]}^{i} \bar{\imath}$
with eigenenergies $E_{[\theta] \bar{\imath}}$ overbar will indicate energy eigenbasis

Build chain iteratively, in $|Q, i\rangle$ basis:
Local basis for each site: $\quad|\sigma\rangle \equiv|\mathbb{R}\rangle \in\{|1\rangle,|-1\rangle\} \quad$ for spin -1/2 chain

Ket:
 'sum rule' at each vertex:

$$
\begin{equation*}
\underbrace{Q_{l-s}+R_{l}}_{\text {in }}=Q_{l} \tag{1}
\end{equation*}
$$

Unit matrix transforms to 'symmetry eigenbasis':

The i-index is usually not displayed in diagrams, and we will omit it henceforth.

Bra:

'sum rule' at each vertex:

$$
\begin{equation*}
\underbrace{Q_{l-1}^{\prime}+R_{l}^{\prime}}_{\text {out }}=Q_{l}^{\prime} \tag{3}
\end{equation*}
$$

11 -matrices encode the sum rules, thereby yielding a block-diagonal Hamiltonian.

Examples: Induction: if $H_{\ell-1}$ is block-diagonal, so is H_{ℓ} :

These relations imply: $\quad Q_{l}^{\prime} \stackrel{(6)}{=} Q_{l-1}^{\prime}+R_{\ell} \stackrel{(4)}{=} Q_{l-1}+R_{l} \stackrel{(5)}{=} Q_{l} \Rightarrow$ block-diagonal

$$
\begin{align*}
& \underset{R}{Q_{l}} \quad Q_{l-1}, \mathbb{1}, Q_{l} \quad\left\langle Q_{l-1}^{\prime}\right| \hat{S}_{l-1}^{+}\left|Q_{l-1}\right\rangle \neq 0 \Rightarrow \quad Q_{l-1}^{\prime}=Q_{l-1}+1 \tag{8}\\
& \left\langle R_{l}^{\prime}\right| \hat{S}_{l}^{-}\left|R_{l}\right\rangle \neq 0 \Rightarrow R_{l}^{\prime}=R_{l}-1 \tag{9}\\
& \left.Q_{l-1, R_{l}}|\mathbb{1}| Q_{l}\right\rangle \neq 0 \Rightarrow Q_{l-1}+R_{l}=Q_{l} \tag{10}\\
& \left\langle Q_{l}^{\prime}\right| \mathbb{1}\left|Q_{l-1}^{\prime}, R_{l}^{\prime}\right\rangle \neq 0 \Rightarrow Q_{l}^{\prime}=Q_{l-1}^{\prime}+R_{l}^{\prime} \tag{II}
\end{align*}
$$

These relations imply: $\quad Q_{l}^{\prime} \stackrel{(11)}{=} Q_{l-1}^{\prime}+R_{l}^{\prime} \stackrel{(9)}{=}\left(Q_{l-1}+1\right)+\left(R_{l-1}\right) \stackrel{(5)}{=} Q_{l} \Rightarrow$ block-diagonal This is no surprise: if every vertex satisfies charge conservation, so does entire diagram!

Strategy for iterative diagonalization

(i) Add new site, (ii) transform to symmetry eigenbasis to make Hamiltonian block-diagonal.
(iii) Diagonalize each block, (iv) transform to energy eigenbasis.

(ii) Symmetry eigenbasis:

Symmetry eigenbasis:
$\left|Q_{l, i_{l}}\right\rangle=\left|R_{l}\right\rangle\left|Q_{\ell-1}, i_{l-1}\right\rangle \mathbb{1}^{Q_{l-1}, i_{l-1} ; R_{l}} Q_{l, i l}$

To transform to this basis, attach unit matrices to legs of H_{l} :

(iii) Diagonalize block:

$$
\begin{equation*}
H_{\left[Q_{l}\right]}\left|Q_{l}, \bar{\imath}_{l}\right\rangle=E_{\left[Q_{l}\right], \bar{\tau}_{l}}\left|Q_{l}, \bar{\tau}_{l}\right\rangle \tag{17}
\end{equation*}
$$

Applying this transformation to H_{ℓ} yields diagonal representation:

(16)

So, desired transformation from old to new eigenbasis is:

(Only A-matrices need to be saved to disk.)

Sites 0 and 1

$$
Q_{0, x} \xrightarrow[R_{R_{1}}]{\mathbb{R} Q_{1}}
$$

Green arrows indicate R_{1} ，blue arrows Q_{1}
save only nonzero entries（as when dealing with sparse matrices）

Sites 1 and 2

$\doteq\left\{\right.$| record | bond 1 | site 2 | | bond 2 |
| :---: | :---: | :---: | :---: | :---: |
| index ν | Q_{1} | R_{2} | Q_{2} | data |
| 1 | 1 | 1 | 2 | 1 |
| 2 | 1 | -1 | 0 | 10 |
| 3 | -1 | 1 | 0 | 01 |
| 4 | -1 | -1 | -2 | 1 |

Magenta arrows indicate Q_{1} ，green，arrows R_{2} ，blue arrows Q_{2}

Sites 2 and 3

	$\begin{aligned} & 3 \\ & \pi r \\ & 1 \end{aligned}$	$\frac{1}{\left.\begin{array}{lll} \pi L L & \uparrow L T \\ 12 & 3 \end{array} \right\rvert\,}$	$\overbrace{\substack{\text { Th } \\ 1+2 \\ 1 \\ 1}}^{-1}$	-3 」し」 1	Table lis record index ν	$\begin{aligned} & \text { ts }\left(Q_{2},\right. \\ & \text { bond } 2 \\ & Q_{2} \end{aligned}$	R_{3} com site 3 R_{3}	bination bond 3 Q_{3}	yielding data
$1 \uparrow \uparrow(2,1) \uparrow$	1								
1 1 $\uparrow(2,-1) \downarrow$		1000				2			
$\left.\begin{array}{ll} 1 & \uparrow \downarrow \\ 2 & \iota \uparrow \end{array}\right\}(0,1) \uparrow$		0 1 0 0 0 1			2	2	-1 1	1	1 0 0 0 1 0
$\left.\begin{array}{ll} 1 & r \downarrow \\ 2 & \downarrow ? \end{array}\right\}(0,-1) \downarrow$			1 0 0 0 1 0		4	0	-1	-1	$\frac{10}{0} 0011$
$1 \quad 4(-2,1)$ ¢			0001		5	-2	1	-1	1010 00001
1 $\downarrow(-2,-1) \downarrow$				1					

Magenta arrows indicate Q_{2} ，green，arrows R_{3} ，blue arrows Q_{3}

The scheme for producing such tables can be automated！

Full A-matrix obtained by diagonalizing H has similar structure:

label rows of A
label columns of A

