Symmetries I Aldian.

SYM-I.1

NRG: [Wilson1975], [Toth2008], [Weichselbaum2012b]

Q5pace

DMRG: [McCulloch2001], [McCulloch2002]

General tensor network: Singh, Pfeiffer, Vidal [Singh2010]

Goal: exploit symmetries of Hamiltonian!

If Hamiltonian has symmetries,

generator of symmetry group
$$\left(\begin{array}{ccc} \hat{H} & \hat{Q} \end{array} \right) = 0, \text{ then:} \qquad (i)$$

$$\langle \bar{i}, 0 | Q = \langle \bar{i}, Q | \hat{Q} \rangle$$

overbar will indicate energy eigenbar
$$|Q|^{\frac{1}{2}} = E_{0,\overline{1}} |Q|^{\frac{1}{2}}$$
 (z)

- ${\mathcal H}$ connects only states with same ${\mathcal Q}$ \implies blockdiagonal
- for non-Abelian symmetries, eigenstates from degenerate multiplets,

$$0$$
, $\overline{\iota}$, where η distinguishes states within multiplet, and $\overline{\iota}$ enumerates distinct multiplets.

Exploiting these structures reduces numerical costs!

1. Example, Abelian symmetry: XXZ-chain (spin 1/2)

$$H = \sum_{\ell} \frac{J}{2} \left(s_{\ell}^{\dagger} s_{\ell+1}^{-} + s_{\ell}^{-} s_{\ell+1}^{+} \right) + \sum_{\ell} T_{2} s_{\ell}^{2} s_{\ell+1}^{2}$$
(3)

 $\hat{S}_{tst}^{2} = \sum_{\ell} \hat{S}_{\ell}^{2}$, is conserved: $\left[\hat{H}, \hat{S}_{tst}^{2}\right] = 0$ 'Abelian symmetry'

This is obvious by inspection. But let us check explicitly:

This is obvious by inspection. But let us check explicitly:

One site:
$$\hat{S}_{\ell}^{t} = \hat{I} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\hat{S}_{\ell}^{z} = \hat{I} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\hat{S}_{\ell}^{z} = \begin{pmatrix} y_{2} & 0 \\ 0 & -y_{2} \end{pmatrix}$$

Consider direct-product space of sites 1 and 2, and its Hamiltonian H_{12}

$$\hat{S}_{1}^{2}\hat{S}_{2}^{2} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2$$

Two observations:

•
$$\left[\hat{S}_{tot}^{z}, \hat{H}_{r_{z}}\right] = 0$$
, $\Rightarrow \hat{H}_{r_{z}}$ does not mix states with different values of S_{tot}^{z}

• Eigenstates of
$$\hat{H}_{12}$$
 will carry $\hat{S}_{tot}^{\frac{1}{2}}$ -eigenvalue as one of their quantum numbers.

Programming challenge: exploit this 'sparse' structure to save memory and computation time! We don't want to store large matrices with many zeros! Instead, store only relevant information!

Bookkeeping Use
$$Q = 2$$
 (Eigenvalue of \mathcal{S}_{fof}) as label: (1)

Label states as \bigcirc , where i enumerate states with same \bigcirc

Record of states needed to describe 2 sites:

record index <i>y</i>	Q	i	explicit representation	state
1	Z	1	1	111)
		t	$ (1,0)^{T} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $ $ (0,1)^{T} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $	11,1>
Σ	D	Z	$(0,1)^T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$	14,77
3	- 2	1	((111)

Record of sectors ('blocks') of Hamiltonian for 2 sites:

The task of diagonalizing Hamiltonian can be split into three separate tasks (two of which are trivial).

record index y	Q'	Q.	(a'IHIQ> ~
l	2	2	4 J ₂
2	D	0	J(01) - 4J2(01)
3	-2	- 7	1/4 J _z (13)

(12)

Consider direct-product space of sites 1 and 2 and 3:

Consider direct-product space of sites 1 and 2 and 3:

$$\hat{S}_{\text{inf}}^{2} = \hat{S}_{1}^{2} + \hat{S}_{2}^{2} + \hat{S}_{3}^{2} = \hat{S}_{1}^{2} \otimes \hat{\mathbf{1}}_{3} + \hat{\mathbf{1}}_{1} \otimes \hat{S}_{2}^{2} \otimes \hat{\mathbf{1}}_{3} + \hat{\mathbf{1}}_{1} \otimes \hat{\mathbf{1}}_{2} \otimes \hat{\mathbf{S}}_{3}^{2}$$

$$= \begin{pmatrix}
\hat{I}_{1} & \hat{I}_{1} & \hat{I}_{1} & \hat{I}_{2} & \hat{I}_{3} & \hat{I}_{3} & \hat{I}_{4} & \hat{I}_{1} & \hat{I}_{4} & \hat{I}_{$$

direct-product scheme does not automatically produce a manifest block structure

to arrive at a block structure, switch rows: 4 \longleftrightarrow 5 and columns: 4 \longleftrightarrow 5

1141

-3 116

there are several ways to obtain the same \int_{1}^{ϵ} :

only connects states within block identified by unique total $\int_{-\infty}^{2}$!

(21)

$$\frac{H^{22}}{J_{2}} = \hat{S}_{1}^{2} \hat{S}_{2}^{2} \hat{I} + \hat{I}_{1} \hat{S}_{2}^{2} \hat{S}_{3}^{2}$$

$$3/2 \quad /2 \quad /2 \quad /2 \quad -/2 \quad -$$

$$\frac{1}{1} = \frac{1}{1} = \frac{1$$

(24)

Bookkeeping Use
$$Q = Z(Eigenvalue of S_{bot}^{t})$$
 as label: (25)

Record of states needed to describe 3 sites:

record index y	Q	l į	explicit representation	state
- 1	3	1	t	1111)
٤	J	1 2 3	(1,0,0) ^T (0,1,6) ^T (0,0,1) ^T	(111) (111)
3	~ (ا ک 3	(1,0,0) ^T (0,1,0) ^T (0,0,1) ^T	(1111) (1111) (111)
4	- 3	1	l	11112

(Z6)

Record of sectors ('blocks') of Hamiltonian for 3 sites:

The task of diagonalizing Hamiltonian can be split into four separate tasks (two of which are trivial).

record index y	Q ¹	Q,	(d H Q) ~ SQQ'
ı	3	3	2. 1/4 Jz
ι	l	ſ	$\frac{1}{2}\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{1}{4}\int_{\frac{1}{4}}^{6} \begin{pmatrix} 6 & -2 \\ -2 & 0 \end{pmatrix}$
3	-1	-5	J2 (010) + 4 J2 (0-20)
4	-3	-3	2. 1/4 Jt (22)

Labelling scheme for Abelian symmetry

Suppose $\begin{bmatrix} \hat{A} & \hat{Q} \end{bmatrix} = 6$, and \hat{Q} -eigenstates are uniquely labeled by a <u>single</u> quantum number: $\hat{Q} \mid Q \rangle = Q \mid Q \rangle$ (e.g. eigenstates of $S_{tot}^{\frac{2}{5}}$) (26)

$$\hat{Q} \mid Q \rangle = Q \mid Q \rangle$$
 (e.g. eigenstates of $S_{\text{fat}}^{\hat{Z}}$) (21)

Then all states in Hilbert space can be labeled by following scheme:

ullet 'i-label' or 'multiplet label': i , enumerates different irreducible multiplets having the same $^{\mathbb{Q}}$ For an abelian symmetry each 'multiplet' contains just a single state, hence 🔇 suffices for labeling states. (For nonabelian symmetry, it could contain several states, hence another internal label is needed: |Qq, i)

In group theory language: 0, 0 is a 'reducible multiplet' of 0, the index 0 serves to 'reduce' it.

We need systematic, automatable way of generating all states $|0,i\rangle$ and computing matrix elements

$$H_{[Q]i}^{i'} = \langle Q, i' | \hat{H} | Q, i \rangle$$
 (31)

Diagonalizing
$$| \frac{1}{2} |$$
 yields symmetry- and energy eigenstates, $| \frac{1}{2} | = | \frac{1}{2} |$ with eigenenergies $| \frac{1}{2} |$ overbar will indicate energy eigenbasis

2. Iterative diagonalization with Abelian symmetry

Sym-I.2

Build chain iteratively, in low ibasis:

Ket:

Q₀, i₀ 1 Q₁, i₁ 1 Q₂, i₂ 1 Q₃, i₃ 'sum rule' at each vertex:
$$R_1 \qquad R_2 \qquad R_3 \qquad \qquad R_4 = Q_4$$

$$\frac{Q_{l-1} + R_{\ell}}{\text{in}} = Q_{\ell} \quad (1)$$

Unit matrix transforms to 'symmetry eigenbasis':

$$|Q_{\ell}, i_{\ell}\rangle = |R_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \frac{1}{2} Q_{\ell-1}, i_{\ell-1} |R_{\ell}\rangle Q_{\ell,i_{\ell}} Q_{\ell,i_{\ell}} Q_{\ell,i_{\ell}}$$

$$|Q_{\ell}, i_{\ell}\rangle = |R_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \frac{1}{2} Q_{\ell,i_{\ell}} Q_{\ell,$$

The i-index is usually not displayed in diagrams, and we will omit it henceforth.

Bra:

'sum rule' at each vertex:

$$Q_0^1$$
 Q_1^1
 Q_1^2
 Q_2^1
 Q_3^1
 Q_3^2
'sum rule' at each vertex:

 Q_1^2
 Q_2^3
 Q_3^4
 Q_3^4
 Q_3^4
 Q_3^4
 Q_3^4

'sum rule' at each vertex:

$$Q' + R' = Q'$$
out in

1 -matrices encode the sum rules, thereby yielding a block-diagonal Hamiltonian.

Examples:

Induction: if H_{e_1} is block-diagonal, so is H_{e_2} :

$$H_{\ell-1} = H_{\ell-1} = H_{\ell-1} = Q_{\ell-1} = Q_{\ell$$

$$\langle Q_{\ell-1}^{\prime} | H | Q_{\ell-1} \rangle \qquad \pm o \Rightarrow Q_{\ell-1}^{\prime} = Q_{\ell-1} \qquad (4)$$

$$\langle Q_{\ell-1}, R_{\ell} | 1 | Q_{\ell} \rangle \Rightarrow Q_{\ell-1} + R_{\ell} = Q_{\ell}$$
 (5)

$$\langle Q'_{\ell} | 1 | Q'_{\ell-1} | R_{\ell} \rangle \Rightarrow Q'_{\ell} = Q'_{\ell-1} + R_{\ell} \langle Q'_{\ell-1} | R_{\ell} \rangle \langle Q'_{\ell-$$

These relations imply:

$$Q'_{\ell} = Q'_{\ell}, + Q'_{\ell} = Q'_{\ell}, + Q'_{\ell} = Q'_{\ell}$$
 \Rightarrow block-diagonal (3)

$$S_{\ell-1}^{+}S_{\ell}^{-} = S_{\ell-1}^{+} \begin{bmatrix} \hat{S}_{\ell-1}^{+} | \hat$$

$$\langle Q_{\ell-1}^{\prime} | \hat{S}_{\ell-1}^{\dagger} | Q_{\ell-1} \rangle \neq 0 \Rightarrow Q_{\ell-1}^{\prime} = Q_{\ell-1}^{\prime} + 1$$
 (8)

$$Q_{\ell-1}R_{\ell}|1|Q_{\ell}\rangle \neq 0 \Rightarrow Q_{\ell-1}+R_{\ell} = Q_{\ell} \qquad (6)$$

$$\langle Q'_{\ell} | 1 | Q'_{\ell-1} | R'_{\ell} \rangle \neq 0 \Rightarrow Q'_{\ell} = Q'_{\ell-1} + R'_{\ell}$$

These relations imply:
$$Q_{\ell}^{\prime} = Q_{\ell-1} + R_{\ell}^{\prime} = (Q_{\ell-1} + I) + (R_{\ell-1}) = Q_{\ell} \Rightarrow \text{block-diagonal}$$
 (12)

This is no surprise: if every vertex satisfies charge conservation, so does entire diagram!

Strategy for iterative diagonalization

- (i) Add new site, (ii) transform to symmetry eigenbasis to make Hamiltonian block-diagonal.
- (iii) Diagonalize each block, (iv) transform to energy eigenbasis.

(i)
$$\hat{H}_{\ell} = \hat{H}_{\ell-1} + \hat{h}_{\ell} + \hat{H}_{\ell-1,\ell}$$

| local term | coupling between sites ℓ -1, ℓ

(ii) Symmetry eigenbasis:

$$|Q_{\ell}, i_{\ell}\rangle = |R_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1}; R_{\ell}} Q_{\ell, i_{\ell}}$$

$$|Q_{\ell}, i_{\ell}\rangle = |R_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1}; R_{\ell}} Q_{\ell, i_{\ell}}$$

$$|Q_{\ell}, i_{\ell}\rangle = |R_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1}; R_{\ell}} Q_{\ell, i_{\ell}}$$

$$|Q_{\ell}, i_{\ell}\rangle = |R_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1}; R_{\ell}} Q_{\ell, i_{\ell}}$$

$$|Q_{\ell}, i_{\ell}\rangle = |Q_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1}; R_{\ell}} Q_{\ell, i_{\ell}}$$

$$|Q_{\ell}, i_{\ell}\rangle = |Q_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1}; R_{\ell}} Q_{\ell, i_{\ell}}$$

$$|Q_{\ell}, i_{\ell}\rangle = |Q_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1}; R_{\ell}} Q_{\ell, i_{\ell}}$$

To transform to this basis, attach unit matrices to legs of H_{λ} :

(iii) Diagonalize block:

$$H_{(Q_{\ell})} |Q_{\ell}, \overline{\iota}_{\ell}\rangle = E_{[Q_{\ell}], \overline{\iota}_{\ell}} |Q_{\ell}, \overline{\iota}_{\ell}\rangle \qquad (13)$$

(iv) Transform to energy eigenbasis:

$$|Q_{\ell}, \overline{\iota}_{\ell}\rangle = |Q_{\ell}, \overline{\iota}_{\ell}\rangle U_{[Q_{\ell}]}^{i_{\ell}} \overline{\iota}_{\ell}$$
 (18)

Applying this transformation to H_{ℓ} yields diagonal representation:

Q, ie Q, Te

Page 8

So, desired transformation from old to new eigenbasis is:

(Only A-matrices need to be saved to disk.)

3. Bookkeeping for unit matrices

Sym-I.3

Green arrows indicate R_i , blue arrows Q_i

save only nonzero entries (as when dealing with sparse matrices)

Magenta arrows indicate <a>◊।, green,arrows <a>१, blue arrows <a>◊

	Table lists $(\mathcal{R}_1, \mathcal{R}_2)$ combinations yielding									
	record index y	bond 1	site 2	bond 2	data					
)	t	l	Ţ	Z	1					
١	2	τ	~(6	10					
	3	- ((0	01					
I										

Sites 2 and 3

 $Q_2 \xrightarrow{1} Q_3$

1 ^{Q2,R3} Q3								1 _{R3}	b
03	3	_	<u>۱</u>		_	-1		- 3	
iz (Qz, R3) 23	11c			s rm	LAT			1	
1 M (5'1) V									
(M (5'-1) f		1	٥	0					
5 th (0'1) t		0	0	0					<u>.</u>
z τη (ρ'-ι) f					0	0	0 0		
1 4 (-21) 1					0	0	1		
1 4 (-2,-1) 1								1	-

record bond 2 site 3 bond 3 data index y 02 R3 Q3

1 2 1 3 1

2 2 -1 1 1 0 0

3 0 1 1 0 0 0 1

4 0 -1 -1 1 0 0

5 -2 1 -1 0 0 1

Table lists (\aleph_2, \aleph_3) combinations yielding $\&_3$

Magenta arrows indicate Q_2 , green,arrows R_3 , blue arrows Q_3

The scheme for producing such tables can be automated!

Full A-matrix obtained by diagonalizing H has similar structure:

