Symmetries I: Abelian

NRG: [Wilson1975], [Toth2008], [Weichselbaum2012b] DMRG: [McCulloch2001], [McCulloch2002] General tensor network: Singh, Pfeiffer, Vidal [Singh2010] Goal: exploit symmetries of Hamiltonian! generator of symmetry group $\begin{bmatrix} \hat{H} & \hat{Q} \end{bmatrix} = 0$, then: (1) If Hamiltonian has symmetries, $\hat{Q} \mid Q, \bar{z} \rangle = Q \mid Q, \bar{z} \rangle, \quad \hat{H} \mid Q, \bar{z} \rangle = E_{Q, \bar{z}} \mid Q, \bar{z} \rangle \quad (z) \quad ($ · for non-Abelian symmetries, eigenstates from degenerate multiplets, where $\frac{9}{10}$ distinguishes states within multiplet, and $\overline{1}$ enumerates distinct multiplets. 24 109,27, Exploiting these structures reduces numerical costs! 1. Example, Abelian symmetry: XXZ-chain (spin 1/2) symmetry group: U(1) $\hat{H} = \sum_{p} \underbrace{J}_{2} \left(\hat{s}_{p}^{\dagger} \hat{s}_{p+1}^{\dagger} + \hat{s}_{p}^{\dagger} \hat{s}_{p+1}^{\dagger} \right) + \sum_{p} \underbrace{J}_{2} \hat{s}_{p}^{2} \hat{s}_{p+1}^{2}$ (3) $\hat{S}_{lst}^{2} = \sum_{\ell} \hat{S}_{\ell}^{2}$, is conserved: $\begin{bmatrix} \hat{H} & \hat{S}_{rst}^{2} \end{bmatrix} = 0$ 'Abelian U(1) symmetry' (4) Total spin, For Abelian symmetry, conserved quantum number is often called 'charge': $\hat{Q} = 2 \hat{S}_{\text{fw}}^{2}$. to avoid proliferation of $\frac{1}{2}$ factors Conservation of S_{LL}^{*} is obvious by inspection. But let us check explicitly: $\hat{S}_{\ell}^{t} = \begin{pmatrix} \hat{I} & I \\ \circ & I \\ 0 & I \end{pmatrix} \quad \hat{S}_{\ell}^{-} = \begin{pmatrix} \hat{I} & I \\ \circ & \delta \\ 0 & 0 \end{pmatrix} \quad \hat{S}_{\ell}^{-} = \begin{pmatrix} Y_{2} & \circ \\ \circ & -Y_{2} \end{pmatrix}$ One site: (5) Consider direct-product space of sites 1 and 2, and its Hamiltonian H_{12} : $\hat{S}_{1}^{\dagger} + \hat{S}_{2}^{\dagger} = \hat{S}_{1}^{\dagger} \otimes \hat{1}_{1} + \hat{1}_{1} \otimes \hat{S}_{2}^{\dagger}$ (6) $= \begin{bmatrix} \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\$

 $\left(\begin{array}{c} 0\\ -\frac{1}{2}\end{array}\right) -2 + \left[\begin{array}{c} -\frac{1}{2}\\ -\frac{1}{2}\end{array}\right]$

Page 1

SYM-I.1

$$\hat{S}_{1}^{2}\hat{S}_{2}^{2} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \\ -\frac{1}{2} \end{pmatrix} \\$$

• $\left[\begin{array}{c} S_{\text{tof}} \\ H_{12} \end{array} \right] = 0$, $\implies H_{12}$ does not mix states with different values of S_{tot} . • Eigenstates of H_{12} will carry \hat{S}_{tot}^{2} -eigenvalue as one of their quantum numbers. (10)

Programming challenge: exploit this 'sparse' structure to save memory and computation time! We don't want to store large matrices with many zeros! Instead, store only relevant information!

Bookkeeping Use 🔍 =	= <mark>Z</mark> (Eiger	nvalue of	Ŝtot) as	abel:		(11)
Label states as $\langle Q, i \rangle$, where	ere i	enum	erate state	es with same 🔾 🖕		
Record of states needed	record index y	Q	i	explicit representation	state	
to describe 2 sites:	1	2	1	(14,		
The sites of the site two sites 2		0	1	(1, 0) ^T	11,1>	
0	2	0	ζ	(0, l) ^T	16,7)	
-1 < -2	3	- 2	1	1	(17)	(12)
Record of sectors ('blocks') of	record index			(« IHI @> ~ See		
Hamiltonian for 2 sites:	t	٢	Z	ት ፓ _ን		_
The task of diagonalizing Hamiltonian can be split into three separate tasks	2	٥	0	$\frac{J}{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{4} J_{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, ,
(two of which are trivial).	3	- 2	- 2	4 J2		(13)

Consider direct-product space of sites 1 and 2 and 3:

$$\begin{split} \hat{S}_{het}^{\pm} &= \hat{S}_{1}^{\pm} + \hat{S}_{2}^{\pm} + \hat{S}_{3}^{\pm} = \hat{S}_{1}^{\pm} \otimes \hat{\mathbf{1}}_{a} \otimes \hat{\mathbf{1}}_{a}^{\pm} + \hat{\mathbf{1}}_{1} \otimes \hat{S}_{2}^{\pm} \otimes \hat{\mathbf{1}}_{a}^{\pm} + \hat{\mathbf{1}}_{1} \otimes \hat{\mathbf{1}}_{a}^{\pm} \otimes \hat{S}_{1}^{\pm} \quad (i_{4}) \\ &= \begin{pmatrix} \frac{1}{2} \begin{pmatrix} |(1,1) \\ |(1,1) \\ -\frac{1}{2} \begin{pmatrix} |(1,1) \\ |(1,1) \\ |(1,1) \end{pmatrix} \end{pmatrix} + \begin{pmatrix} |(1,1) \\ |(1,1) \\ -\frac{1}{2} \begin{pmatrix} |(1,1) \\ |(1,1) \end{pmatrix} \end{pmatrix} + \begin{pmatrix} |(1,1) \\ |(1,1) \\ -\frac{1}{2} \begin{pmatrix} |(1,1) \\ |(1,1) \end{pmatrix} \end{pmatrix} + \begin{pmatrix} |(1,1) \\ |(1,1) \\ -\frac{1}{2} \begin{pmatrix} |(1,1) \\ |(1,1) \end{pmatrix} \end{pmatrix} + \begin{pmatrix} |(1,1) \\ |(1,1) \\ |(1,1) \end{pmatrix} \end{pmatrix} + \begin{pmatrix} |(1,1) \\ |(1,1) \\ |(1,1) \end{pmatrix} \end{pmatrix} + \begin{pmatrix} |(1,1) \\ |(1,1) \\ |(1,1) \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} \hat{s}_{1} \\ \hat{s}_{2} \\ \hat{s}$$

$$\frac{\hat{H}_{spin} - fl_{p}}{J/2} = \hat{S}_{1}^{+} \hat{S}_{2}^{-} \hat{I}_{3} + \hat{S}_{1}^{-} \hat{S}_{2}^{+} \hat{I}_{3} + \hat{I}_{1}^{-} \hat{S}_{2}^{+} \hat{S}_{3}^{-} + \hat{I}_{1}^{-} \hat{S}_{2}^{-} \hat{S}_{3}^{+} \qquad (17)$$

$$= \begin{pmatrix} 1 & (1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 1(1(1)^{\circ}) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1(1(1)^{\circ}) \\ 0$$

Page 3

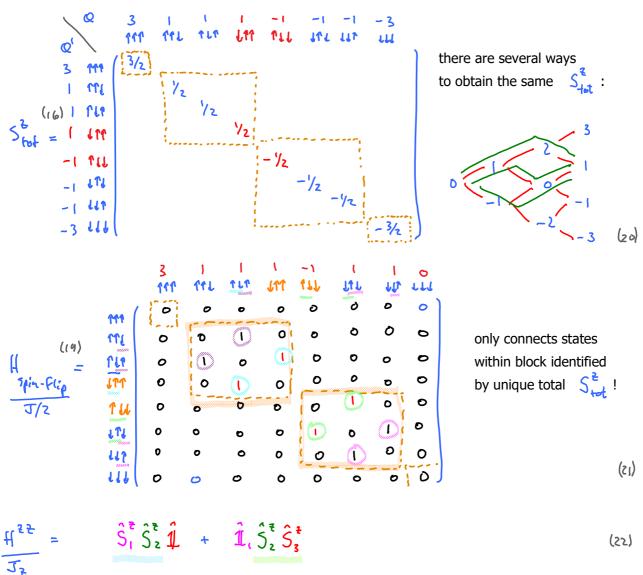
rect-product scheme bes not automatically produce a anifest block structure

to arrive at a block structure, switch rows: $4 \iff 5$ and columns: $4 \iff 5$

(18)

-1	171	0	0	ø	\mathbf{O}	0	0	U.	Ŭ	and columns:	4 🛶 S	
~1	117	0	0	٥	ο	0	1	ວ	0	and columns:		1.0
-3	111	0				ο		ø	δ			(19)

After switch, operators are block-diagonal:



0 0

(21)

0 0

=

0-20 000

	0	0	-2	0	D	O	0	o
1	o	0	0	o	0	0	D	0
4	ο	0	D	D	D	٥	0	ο
	o	0	ø	ø	0	- 2	6	0
	0	o	0	0	D	ى	0	0
	o	Ο	0	٥	0	0	0	2

Bookkeeping

=

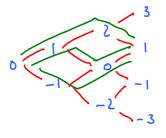
Use 🤇

 \bigcirc = \mathbf{Z} (Eigenvalue of $\mathbf{S}_{\mathbf{k}}^{\mathbf{t}}$) as label:

(25)

(29)

Record of states needed to describe 3 sites:



Record of sectors ('blocks') of Hamiltonian for 3 sites:

The task of diagonalizing Hamiltonian can be split into four separate tasks (two of which are trivial).

record				
index 🏏	Q	i	explicit representation	state
I.	3	1	t	1111>
		ι	(1,0,0) ^T	(ttj)
2	1	2	(1,0,0) ^T (0,1,0) ^T (0,0,1) ^T	(TLT)
		3	$(v,o,i)^T$	1142
		1	(1,0,0) ^T (0,1,0) ^T (0,0,1) ^T	(11)
3	- (2	(0.1,0) ^T	Catal
		3	(0,0,1)T	(1,1,1)
4	- 3	1	L	(111)

record index y	Q	Q.	(al Hlai) ~ Saa'
I.	3	3	2· & J2
۲)	ſ	$\frac{J}{2} \begin{pmatrix} \circ & 1 & \circ \\ 1 & \circ & 1 \\ \circ & 1 & \circ \end{pmatrix} + \frac{L}{4} J_{\epsilon} \begin{pmatrix} \circ \\ -2 \\ -2 \\ \circ \end{pmatrix}$
3	-1	- ($\frac{J}{2}\begin{pmatrix}0&1&0\\1&0&1\\0&1&0\end{pmatrix}+\frac{1}{4}J_{2}\begin{pmatrix}0&-2\\0&-2\\0\end{pmatrix}$
4	-3	- 3	$Z \cdot \frac{1}{4} J_2 \qquad (27)$

la i>

Labelling scheme for Abelian symmetry

Suppose $\left[(\hat{A}, \hat{a}) \right] = 6$, and \hat{a} -eigenstates are uniquely labeled by a single quantum number: $\hat{a} \mid \hat{a} \rangle = 0$ (e.g. eigenstates of $S_{\text{tot}}^{\ddagger}$) (25)

Then all states in Hilbert space can be labeled by following scheme:

- 'Q-label' or 'symmetry label': 🔕 , eigenvalues of 😡
- 'i-label' or 'multiplet label', enumerates different irreducible multiplets having the same Q (30)
 For an abelian symmetry each 'multiplet' contains just a single state, hence Q suffices for labeling states.
 (For nonabelian symmetry, it could contain several states, hence another internal label is needed: Q , i)

In group theory language: $|0,i\rangle$ is a 'reducible multiplet' of $\hat{0}$, the index \hat{i} serves to 'reduce' it. We need systematic, automatable way of generating all states $|0,i\rangle$ and computing matrix elements

$$|\mathcal{H}_{[0]}^{i'}_{i} = \langle Q, i' | \hat{\mathcal{H}} | Q, i \rangle \qquad (31)$$

Diagonalizing $[+]_{[Q]}$ yields symmetry- and energy eigenstates, $[Q, \overline{\iota}] = [Q, i] \mathcal{U}_{[Q]}$ (32) with eigenenergies $E_{[Q]} \overline{\iota}$ overbar will indicate energy eigenbasis

2. Iterative diagonalization with Abelian symmetry

Build chain iteratively, in
$$[\mathfrak{q}_{,i}]$$
 basis:
Local basis for each site: $[\mathfrak{r} > \equiv \{R\} \in \{[1]\}, [-1]\}$ for spin-1/2 chain
Ket: $\mathfrak{q}_{0}, \mathfrak{i}_{0} = \mathfrak{1}, \mathfrak{q}_{1}, \mathfrak{i}_{1} = \mathfrak{q}_{2}, \mathfrak{i}_{2} = \mathfrak{q}_{3}, \mathfrak{i}_{3}$ 'sum rule' at each vertex:
Ket: $\mathfrak{q}_{0}, \mathfrak{i}_{0} = \mathfrak{1}, \mathfrak{q}_{1}, \mathfrak{i}_{1} = \mathfrak{q}_{2}, \mathfrak{i}_{2} = \mathfrak{q}_{3}, \mathfrak{i}_{3}$ 'sum rule' at each vertex:
Ket: $\mathfrak{q}_{0}, \mathfrak{i}_{0} = \mathfrak{1}, \mathfrak{q}_{1}, \mathfrak{i}_{1} = \mathfrak{q}_{2}, \mathfrak{i}_{2} = \mathfrak{q}_{3}, \mathfrak{i}_{3}$ 'sum rule' at each vertex:
In out
Unit matrix transforms to 'symmetry eigenbasis': $\mathfrak{q}_{\ell + i}, \mathfrak{i}_{\ell + i} \neq \mathfrak{q}_{3}, \mathfrak{i}_{\ell} = \mathfrak{q}_{\ell}, \mathfrak{i}_{\ell} = \mathfrak{q}_{\ell}, \mathfrak{i}_{\ell} = \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell}, \mathfrak{i}_{\ell} = \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell} = \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell}, \mathfrak{q}_{\ell} = \mathfrak{q}_{\ell}, \mathfrak{q}_$

Sym-I.2

Page 7

 $\mathcal{R}_{\ell}[1] \mathcal{R}_{\ell-1}, \mathcal{K}_{\ell} \neq 0 \implies \mathcal{R}_{\ell} = \mathcal{R}_{\ell-1} + \mathcal{K}_{\ell}$ ×υ 7-1 -5 (II)

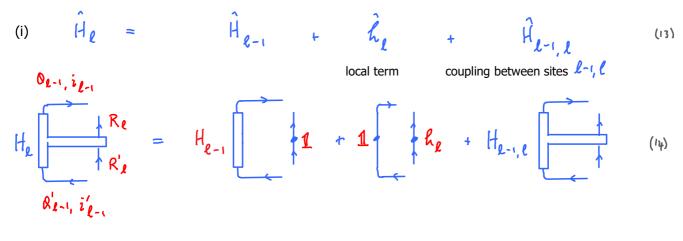
 $Q'_{\boldsymbol{\ell}} \stackrel{(1)}{=} Q'_{\boldsymbol{\ell}-1} + R'_{\boldsymbol{\ell}} \stackrel{(9)}{=} (Q_{\boldsymbol{\ell}-1} + 1) + (R_{\boldsymbol{\ell}} - 1) \stackrel{(s)}{=} Q_{\boldsymbol{\ell}} \implies \text{block-diagonal} \quad (12)$ These relations imply:

This is no surprise: if every vertex satisfies charge conservation, so does entire diagram!

Strategy for iterative diagonalization

(i) Add new site, (ii) transform to symmetry eigenbasis to make Hamiltonian block-diagonal.

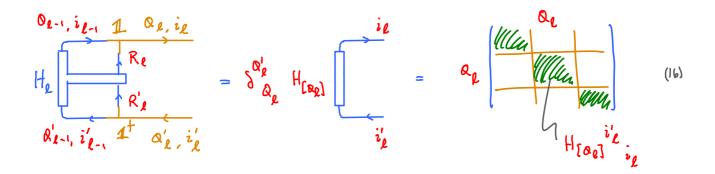
(iii) Diagonalize each block, (iv) transform to energy eigenbasis.



(ii) Symmetry eigenbasis:

$$|Q_{\ell}, i_{\ell}\rangle = |R_{\ell}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle \underline{1}^{Q_{\ell-1}, i_{\ell-1};R_{\ell}} Q_{\ell,i_{\ell}} |Q_{\ell,i_{\ell-1}}| \underline{R}_{\ell} Q_{\ell,i_{\ell}} |Q_{\ell-1}, i_{\ell-1}\rangle |Q_{\ell-1}, i_{\ell-1}\rangle |Q_{\ell,i_{\ell}}| |Q_{\ell,i$$

To transform to this basis, attach unit matrices to legs of H_{ℓ} :



(iii) Diagonalize block:

$$H_{(a_{\beta})} | a_{\ell}, \overline{i}_{\ell} \rangle = E_{[a_{\ell}]\overline{i}_{\ell}} | a_{\ell}, \overline{i}_{\ell} \rangle \qquad (13)$$

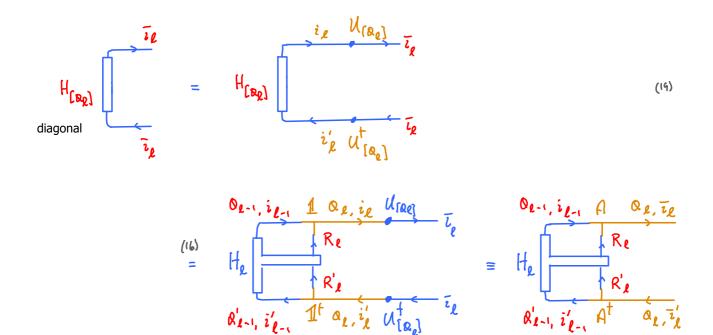
 $|Q_{\ell}, \overline{z_{\ell}}\rangle = |Q_{\ell}, \overline{z_{0}}\rangle \mathcal{U}_{[0, 1]} \overline{z_{\ell}}$

(iv) Transform to energy eigenbasis:

Applying this transformation to H_{ℓ} yields diagonal representation:

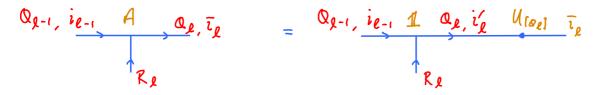
(18)

$$\xrightarrow{i_{\ell}} \mathcal{U}_{(\mathfrak{Q}_{\ell})} \overline{i_{\ell}}$$



So, desired transformation from old to new eigenbasis is:

R'1-1, 20-

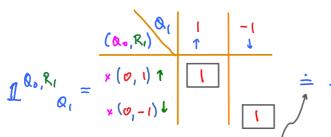


(Only A-matrices need to be saved to disk.)

3. Bookkeeping for unit matrices

Sym-I.3

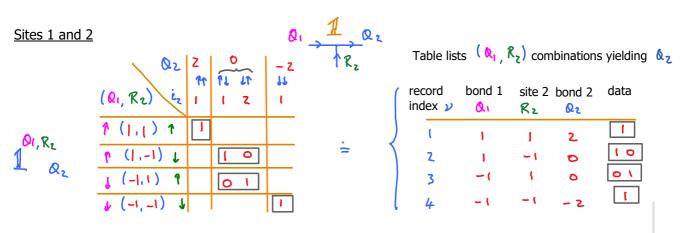
Table lists (&, &) combinations yielding &



record bond 0 site 1 bond 1 data index ン 0.0 Ri 0, 0 l T ١ 2 D -1 - (

Green arrows indicate R_{τ} , blue arrows Q_{τ}

save only nonzero entries (as when dealing with sparse matrices)



 $Q_2 \xrightarrow{\mu} Q_3$

Magenta arrows indicate 0, green, arrows R_2 , blue arrows 0,

Sites 2 and 3

1 ^{Q2, R3} Q3								1 _{R3}	•
⊥ Ø ₃ .	3 Mr	_	1	-	~	-1		-3	
iz (Q2, R3) 23	<u>१</u> २२ (141 1	2 2	r In 3	Ги 1		`_ J(∕∩ 3	111	
1 pp (2,1) p									
(ĵ¶ (z,~) ↓		1	0	0					
$\begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$		0 0	(0	0 1					-
$\begin{pmatrix} z & t_{1} \\ t_{1} \end{pmatrix} (o^{1} - 1) f$					 0	0	b O		
1 61 (-2,1) †					0	0	1		
↓ ↓ (-2,-1) ↓								1	

Magenta arrows indicate Q_2 , green, arrows R_3 , blue arrows Q_3

The scheme for producing such tables can be automated!

	Table lis	its (🗞,	𝑘 ₃) con	nbinations	s yielding 🔕
(record index 🏏	bond 2 <mark>Չ</mark> Հ	site 3 R 3	bond 3 Q3	data
	l.	Ζ	1	3	1
	Z	2	~1	1	100
ł	3	0	I.	1	010
	4	0	~1	-1	100
	5	- 2	I.	~1	
l	6	- 2	~ 1	- 3	

Full A-matrix obtained by diagonalizing H has similar structure:

