MPS-1V: Translationally invariant MPS [Schollw6ck2011, Sec. 4.2.2] MPS-IV.1

Consider translationally invariant MPS, e.g. infinite system, or length-N chain with periodic boundary
conditions. Then all tensors defining the MPS are identical: F} te] = A foral 4 .

Goal: compute matrix elements and correlation functions for such a system.

1. Transfer matrix

Consider length-N chain with periodic boundary conditions: o
Ves indicates trace
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We defined the 'transfer matrix' (with collective indices chosen to reflect arrows on effective vertex)
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Then 2
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Assume all @ -tensors are identical, then the same is true for all T'—matrices. Hence

U peo
eiyy = Te(TNY) = 32({&) () )

where 'l; . are the eigenvalues of the transfer matrix, and ’c‘ is the largest one of these.
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where t\l are the eigenvalues of the transfer matrix, and t‘ is the largest one of these.

Assume now that A -tensor is left-normalized (analogous discussion holds if it is right-normalized).

. . . (MPS-1.1.22)
Then we know that the MPS is normalized to unity: \ = LYY (1)

(MPS-1V.1.8) implies for largest eigenvalue of transfer matrix: (’m)” =1 = bt = (2)

Hence, all eigenvalues of transfer matrix satisfy [-L \S‘ =

eigenvector label: j = 1 (3)
components of eigenvector

.g _ 0('
Claim: the left eigenvector with eigenvalue {\":‘ = (,say \/j : is (\/’)2 = _ﬂ_ « (P]

f
Check: do we find K\}'XG‘T“A :(\/ BL Z 'vector in transfer space' = 'matrix in original space'
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2. Correlation functions MPS-1V.2
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cyclic invariance of trace
Let \/J , t be left eigenvectors, eigenvalues of transfer matrix: \/J T =%J\/\{
T\ b .
[ or explicitly, with matrix indices: ( \/J )0\ l L = 1:1 (\/J)L ]
Transform to eigenbasis of transfer matrix:
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For N =c0 , only contribution of largest eigenvalue, ’L j( = -{;( , survives:
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with correlation length £ = (/(/~({‘ [te )’3"



3. AKLT Model [Affleck1988], [Schollwdck2011, Sec. 4.1.5], [Tu2008] MPS-1V.3
(thanks to Hong-Hao Tu for notes!)

General remarks

* AKLT model was proposed by Affleck, Kennedy, Lieb, Tasaki in 1988.

« Previously, Haldane had predicted that S=1 Heisenberg spin chain has finite excitation gap
above a unique ground state, i.e. only 'massive' excitations [Haldane1983a], [Haldane1983b].

» AKLT then constructed the first solvable, isotropic, S=1 spin chain model that exhibits a
'Haldane gap'.

» Ground state of AKLT model is an MPS of lowest non-trivial bond dimension, D=2.

« Correlation functions decay exponentially - the correlation length can be computed analytically.

Haldane phase for S=1 spin chains / ’% .Lj 7 ¥ /.1
] z N
S=1
Consider bilinear-biquadratic (BB) Heisenberg model for 1D chain of spin S=1:
N~¢ R R 2
”@,& = Z Sl‘ Sﬁ*( + F (SI ‘ S[‘H ) (l\
=
Phase diagram:
pure
integrable point Heisenberg  AKLT integrable point

Y 72 0 ] g
S : | N ———

dimerized phase ( — , gapless phase
gapped Haldane phase:  f ¢ (-1,1)
(includes Heisenberg and AKLT points)

Main idea of AKLT model: [.[ AKLT = H 8% (F = 3 ©

is built from projectors mapping spins on neighboring sites to total spin 5 ;"Z o0 = 2

Ground state satsifies  H AKLT ' 3 7 = O - Toachieve this, ground state is constructed
in such a manner that spins on neighboring sites can only be coupled to 5;0( = 0 or |
]

To this end, the spin-1 on each site is constructed from two auxiliary spin-1/2 degrees of freedom;
One spin-1/2 each from neighboring sites is coupled to spin 0; this projects out the S=2 sector in
the direct-product space of neighboring sites, ensuring that H ALLT annihilates ground state.

traditional depiction: MPS depiction: spin-1/2's live on bonds
S‘-D S=0o
S=o S=o

—PA—— Py Dy
—A— —A—
{ -

N
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4. Construction of AKLT Hamiltonian .P(z,) MPS-1V.4

O: Py
Direct product of space spin 1 with spin 1 contalys/dir%%f spin 0, 1, 2: se¢ g

Lol =#okof, 0

Projector of /(, ® [[ ; onto ‘ZS (with S =vo ( 2 ) @)
[
- > - - L
RY = ROBLEY = o T G5 stew] ®
: 11 s'ts
% o
sites 1,2 normalization factor  yields zero when
total spin = ¢/

z - -
Using (S'm—S,) = S +25-6,+S, = 255 + & , wefind for spin-2 projector:

)TJQ o “

(,(7.2)‘—" c[z?ws_:’rq - o(o+1) H 2505, +u *'('“)l &)
—_— l - -

= C [ (_|, (§:~Sl> + (z SI'SZ £ 3 \ (G)

()
Normalization is fixed by demanding that 'P('.L must yield | when acting on spin-2 subspace:

(2) (»
= N, N = C 1(1&() - 6 ]ll(Zf'() - 1((4—.)] (ﬂ
§,+5) = 2(24)) 4
= = C (OV = C = 4 133
(2} | — .1 i o - M ), .
?(,1 = 1 (%SA + 2585, +4 3 = 'PIJ_(S(/ S,) = projector on S= 2 subspace | %)

AKLT Hamiltonian is sum over spin-2 projectors for all neighboring pairs of spins.

@), . .
Hﬂ‘(LT = zZ ’PIIHK SL 7 3€+r ) ("’)
For a finite chain of N sites, use periodic boundary conditions, i.e. identify S ,&_ U: ? )

Each term is a projector, hence has only non-negative eigenvalues. Hence same is true for HA ke -

=5 A state satisfying HAKLT l'sz = 0 (1{) = 0 must be a ground state!
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5. AKLT ground state

MPS-1V.5
S=o S=zo
—t— —_— S=o S=z°
®% z@®% to7 LT T .,
2z 2 Py Z z P 2 =
S=1( s=1 5= S= 1 S=t S'={
On every site, represent spin 1 as symmetric combination of two auxiliary spin-1/2 degrees of freedom:
[+ = (1Y
|
Is=t,67 = 6% = 6y = £ (1tyey « ey
l
On-site projector that maps ﬁer %Yz to ﬂl : '/z@‘/, = o |
A
\
C = 1Ol + 1o )R (K] « Culdel) + [-HGKy
Use ;s\uchaprOJector on every site f_ : le
= Al( u
Cle] &9, Cup LALEF v
. 14 A
. #1 _ (v o o Lfo 1 _{_oo) -
wn ot o(o), o= k(0 ), = (07) o oo
for coupling
@ - |

Now construct nearest-neighbor valence bonds built from auxiliary spin-1/2 states:

[V>2 = \F¢>ﬂ\dz+l>£*'vpﬂll+‘ TE é’ (\'TL“D ﬂ——h{)ﬂ[/bﬂ) B den
V=t (o E )?L 4 L+

Haldane: 'each site hand-shakes with its neighbors'
AKLT ground state = (direct product of spin-1 projectors) acting on (direct product of valence bonds):

4% = @Tgcm gﬂ V7,

Why is this a ground state?

o
Coupling two auxiliary spin-1/2 to total spin 0 (valence bond) A
eliminates the spin-2 sector in direct product space of two spin-1, ,___.3__,
hence spin-2 projector in HAK Lt Yields zero when acting on this. & o 2 ity

o
(Will be checked explicitly below.) 4 \(_
[ S
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AKLT ground state is an MPS!

. ~ 6, K¢y, B e B oer B Ky
|‘3§ = T lg) B, il - . e
pe % PR A
6}—-! 5‘ 0’[4-(
with 6 ’:g » C V «
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Explicity: 6, = +1 ¥ = (o o) & (_( g) = 67_(0 o
Fo o _ Lfogq\ Lo\ _ L (" °)
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Not normalized: B, 5 v = Li(f, ’o)("l;) + 2&(‘, l)(o l) + ;(-u o)( co) =7 1
te s ~6
Define right-normalized tensors, satisfying B, B® = | 2 = J./%‘ B
z
v _[B [0 _ L-te < (@ (°°
B =3(oo>/ Bo"ﬁ(ot , B:'{(*‘o>

~

Remark: we could also have grouped B and C in opposite order, defining
A

- A fe ;Seﬂv «g C B

ﬁf!-c e - Ff—l ] C_Gl F =
pe =8 %68 "‘T"Q ‘*“‘x_"%

+ -
L This leads to left-normalized tensors, with F\ =1 = B+ A v _ 3% |
» B
Exercise: verify that the projector Pl L (s 3 SU.,\ ze- \F
! (2)
from (MPS-1V.4) yields zero when acting on sites I( ,(H of (65 * ’P¢.8+«/¥
6-l &'I

Hint: use é&%ﬁm representation for (g‘ .3 36‘ c F- = F_,

L Vet c'¢t = 72 Set S ¢

Boundary conditions

For periodic boundary conditions, Hamiltonian includes projector L@_@_@_@_@_)

connecting sites 1 and N. Then ground state is unique.

{ 1
For open boundary conditions, there are 'left-over spin-1/2' degrees of h "\E ;/ )
freedom at both ends of chain. Ground state is four-fold degenerate. !
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( !
For open boundary conditions, there are 'left-over spin-1/2' degrees of h "\i ;//7-
freedom at both ends of chain. Ground state is four-fold degenerate. G % G G @
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6. Transfer operator MPS-1V.6
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Exercise {; y{

(a) Compute the eigenvalues and eigenvectors of l

il
(b) Show that CZ’Z, ~ e” 1£-¢7fs ,with £ = /‘ -
¢ n

Remark: since the correlation length is finite, the model is gapped! = #afo(w 3? /
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7. String order parameter MPS-1V.7

[y .
AKLT ground state: [j 7 = g Tr[ o’?—.” 3 ﬁ’] with 6, € {H, D, ~ | 3
$) T ot ° Z _ & -
B = I T , B =3 T / R = s T
—+ _ Lo - 1l (o e = _ Lt o
with Pauli matrices ([ = (z( o o) T = ﬁ( I <>) , T =2 aau)
t0 e o 11 for Pauli matrices
Now, note that B B ... & & = 0 raise, do nothing,’
—_— raise, yields zero
string of @0

Thus, all 'allowed configurations' (having non-zero coefficients) in AKLT ground state have the
property that every 1 s followed by stringof © ,then ¥

Allowed: ;&’”) - .. looo -tolovoo -t 00 —|
Not allowed: loj“) = tocoo | O | or o ~lo-l1lo
— 4 = = ==

'String order parameter' detects this property:

| 2
n ¢-1 .
Shivg 2 Sy .2

O()_g' J = Stel F ¢ Sfe']

L= L
= 5% ; ews*i\ o ChrS_-, i Sti
¢ 2!
Exercise:

Show that the ground state expectation value of string order parameter is non-zero:

{in (1 6\ osm“j (67 = __%

[-£'50 No o

Hint: first compute | .

e ((\ZS;

Yl oo -l bl 0 ~to+l

Intuitive explanation why string order parameter is nonzero: —l oO[+ 0o ~(¢p «! 0~

|3> |v> L['G
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|3> [v?Lf"

L= z
. -t z St
C:C(t) = % \LY V‘ 4y S%e] CHT =Lt Le S[e] lq‘)

For the AKLT ground state, there are six types of configurations; four of them give -1, the other two give 0:

Fshils) Gtk &) (71 SElE G1sg e TEN S 1
' ! - GO D- () =
- ~ 1 + (=d (=N - (=1) = -t
t1 - o (+ (=) -1 -~
- t | o (=) (#0) - | = -

° 6

© o

A N N

probability to F]et 1 or -1 but not 0 at site €

]
probability to get 1 or -1 but not 0 at site ¢
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