1. Iterative diagonalization

Consider spin- $1 / 2$ chain:

$$
\begin{equation*}
\hat{H}^{N}=\sum_{l=1}^{N} \hat{\vec{s}}_{l} \cdot \vec{h}_{l}+J \sum_{l=2}^{N} \hat{\vec{s}}_{l} \cdot \hat{\bar{\delta}}_{l-l} \tag{1}
\end{equation*}
$$

For later convenience, we write the spin-spin interaction in covariant (up/down index) notation. Define

$$
\begin{equation*}
\hat{S}_{z} \equiv \hat{S}^{\dagger} z=\hat{S}_{z}, \quad \hat{S}_{ \pm} \equiv \frac{1}{\sqrt{2}}\left(\hat{S}_{x} \pm \hat{i}_{y}\right), \quad \hat{S}^{\dagger} \pm \equiv \frac{1}{\sqrt{2}}\left(\hat{S}_{x} \mp i \hat{S}_{y}\right) \quad\left(=\hat{S}_{ \pm}^{+}\right) \tag{2}
\end{equation*}
$$

and the operator triplet $a \in\{+,-, z\}$

$$
\begin{equation*}
\hat{S}_{a} \in\left\{\hat{S}_{+}, \hat{S}_{-}, \hat{S}_{z}\right\}, \quad \hat{S}^{\dagger_{a}} \in\left\{\right. \tag{3}
\end{equation*}
$$

Then $\hat{\vec{S}}_{l} \cdot \hat{S}_{l-1}=\hat{S}_{l}^{x} \hat{S}_{l-1}^{x}+\hat{S}_{l}^{y} \hat{S}_{l-1}^{y}+\hat{S}_{l}^{z} \hat{S}_{l-1}^{z}$

$$
\begin{equation*}
=\hat{S}_{\ell}^{\dagger}+\hat{S}_{l \ell-1}+\hat{S}_{\ell}^{\dagger}-\hat{S}_{-l-1}+\hat{S}_{\ell}^{z} \hat{S}_{z \ell-1}^{\dagger}=\hat{S}_{\ell}^{+a} \hat{S}_{\ell-1 a} \tag{4}
\end{equation*}
$$

$$
\hat{S}_{-} \hat{S}_{+}+\hat{S}_{+} \hat{S}_{-}+S_{z} \cdot S_{z}
$$

In the basis $\left\{|\vec{\sigma}\rangle_{N}\right\}=\left\{\left|\sigma_{N}\right\rangle \ldots\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle\right\}$, the Hamiltonian can be expressed as
$H_{\vec{\sigma}}^{\vec{\sigma}} \quad$ is a linear map acting on a direct product space: $\quad V \otimes N \equiv V_{1} \otimes V_{2} \otimes \ldots \otimes V_{N}$
where $\quad V_{\ell}$ is the 2-dimensional representation space of site $l . \quad|\uparrow\rangle \doteq\binom{1}{0}, \quad|\downarrow\rangle \doteq\binom{0}{1}$ \hat{H}^{N} is a sum of single-site and two-site terms.

On-site terms:

$$
\begin{equation*}
\hat{S}_{a l}=\left|\sigma_{l}^{\prime}\right\rangle\left(S_{a}\right)^{\sigma_{l}} \sigma_{l}\left\langle\sigma_{l}\right| \tag{6}
\end{equation*}
$$

Matrix representation in $V_{l}: \quad\left(S_{a}\right)^{\sigma_{l}^{\prime}} \sigma_{l}=\left\langle\sigma_{l}^{\prime}\right| \hat{S}_{a l}\left|\sigma_{l}\right\rangle=\left(\begin{array}{ll}\left(S_{a}\right)_{\uparrow}^{\uparrow} & \left(S_{a}\right)_{\downarrow}^{\uparrow} \\ \left(S_{a}\right)_{\uparrow}^{\iota} & \left(S_{a}\right)_{\downarrow}^{\downarrow}\end{array}\right)$

$$
S_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \tag{8}\\
0 & 0
\end{array}\right), \quad S_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad S_{z}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Nearest-neighbor interactions, acting on direct product space, $\left|\sigma_{\Omega}\right\rangle \otimes\left|\sigma_{\ell-1}\right\rangle$:

$$
\begin{align*}
& \left.\hat{S}_{l+a} \otimes S_{l}^{t}=\sigma_{l}^{\prime}\right\rangle\left|\sigma_{l-1}^{\prime}\right\rangle \underbrace{\left.S_{a}\right|_{\sigma_{l-1}} ^{\sigma_{l-1}}}_{111}|\underbrace{S^{\dagger} a}_{111}|_{\sigma_{l}}^{\sigma_{l}^{\prime}} \sigma_{l-1} \mid\left\langle_{l}\right| \tag{9}\\
& \text { Matrix representation in } V_{l-1} \otimes V_{l}: \quad S_{a_{l-1}^{\sigma}}^{\sigma_{l-1}^{\prime}} \quad S_{\sigma_{l}}^{+\sigma_{l}^{\prime} a}
\end{align*}
$$

We define the 3-leg tensors S, S^{\dagger} with index placements matching those of A tensors for wavefunctions: incoming upstairs, outgoing downstairs (fly in, roll out), with a (by convention) as middle index.

Diagonalize site 1

Matrix
acting on V_{1} :

$D_{1}=U_{1}^{\dagger} H_{1} U_{1}$ is diagonal, with matrix elements
$\left(D_{1}\right)^{\alpha^{\prime}}{ }_{\alpha}{ }^{\prime}=\left(U_{1}^{\dagger}\right)^{\alpha_{1}}{ }_{\sigma_{1}}\left(H_{1}\right)^{\sigma^{\prime}}{ }_{\sigma_{1}}\left(U_{1}\right)^{\sigma_{1}} \alpha$

Eigenvectors of the matrix $H_{1} \quad$ are given by column vectors of the matrix $\left(U_{1}\right)^{61}{ }_{\alpha}$:
Eigenstates of operator \hat{H}_{1} are given by: $|\alpha\rangle=\left|\sigma_{1}\right\rangle\left(U_{1}\right)^{\sigma_{1}} \times \frac{U_{1}}{\Gamma_{\sigma_{1}}} \alpha(13)$

Add site 2

Diagonalize $\hat{H}_{2} \quad$ in enlarged Hilbert space, $\quad \mathscr{l}_{(2]}=\operatorname{span}\left\{\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle\right\}$
chain of length 25
$\begin{aligned} & \text { Matrix } \\ & \text { acting on } V_{1} \otimes V_{2}: H_{2} \\ & \vec{S}_{H_{1}}^{S_{1} \cdot \vec{h}_{1}} \otimes \mathbb{H}_{2}\end{aligned} \mathbb{I}_{1} \otimes \underbrace{\overrightarrow{S_{2}} \cdot \vec{h}_{2}}_{H^{\text {loc }}}+\underbrace{J S_{a_{1}}^{S_{2}}}_{H^{\text {loo }}}$
Matrix representation in $V_{1} \otimes V_{2}$ corresponding to 'local' basis, $\left\{\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle\right\}$:

We seek matrix representation in $V_{1} \otimes V_{2}$ corresponding to enlarged, 'site-1-diagonal' basis, defined as
$|\tilde{\alpha}\rangle \equiv\left|\alpha \sigma_{2}\right\rangle \equiv\left|\sigma_{2}\right\rangle|\alpha\rangle=\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle u_{1}^{\sigma_{1}} \alpha \quad \alpha \rightarrow \frac{\mathbb{1}}{\sigma_{\sigma_{2}}} \tilde{\alpha}_{2}=x \frac{u_{1} \alpha \frac{1}{4}}{\sigma_{1}} \underset{\sigma_{2}}{1}$ To this end, attach U_{1}^{\dagger}, U_{1} to in/out legs of site 1 , and $\mathbb{1}, \mathbb{1}$ to in/out legs of site 2 :

Now diagonalize $\quad H_{2}$ in this enlarged basis: $\quad H_{2}=U_{2} D_{2} U_{2}^{t}$
$D_{2}=U_{2}^{\dagger} H_{2} U_{2}$ is diagonal, with matrix elements

Eigenvectors of matrix H_{2} are given by column vectors of the matrix $\left(u_{2}\right)_{\beta}^{\alpha}=\left(u_{2}\right)^{\alpha \sigma_{2}}$: Eigenstates of the operator \hat{H}_{2} :

$$
\begin{align*}
& |\beta\rangle=|\alpha\rangle\left(U_{2}\right)_{\beta}^{\tilde{\alpha}}=\left|\sigma_{2}\right\rangle|\alpha\rangle\left(U_{2}\right)^{\alpha \sigma_{2}} \beta=\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle\left(u_{1}\right)_{\alpha}^{\sigma_{1}}\left(u_{2}\right)^{\alpha \sigma_{2}} \beta \tag{21}
\end{align*}
$$

Add site 3
Transform each term involving new site into the 'enlarged, site-12-diagonal basis', defined as

$$
\begin{equation*}
|\tilde{\beta}\rangle \equiv\left|\beta \sigma_{3}\right\rangle \equiv\left|\sigma_{3}\right\rangle|\beta\rangle \quad \beta \rightarrow \frac{1}{\substack{\uparrow \\ \sigma_{3}}} \tilde{\beta}=\times \frac{u_{1} u_{2} 1}{\underset{\sigma_{1}}{1} \sigma_{\sigma_{2}} \sigma_{\sigma_{3}}} \tilde{\beta} \tag{23}
\end{equation*}
$$

For example, spin-spin interaction, $\mathrm{H}_{32}^{\text {int }}$:

Local basis:

enlarged, site-12-diagonal basis:

At each iteration, Hilbert space grows by a factor of 2 . Eventually, trunctations will be needed...!

It is useful to have a graphical depiction for basis changes.
Consider a unitary transformation defined on chain of length $\ell \quad$, spanned by basis $\left\{\left|\vec{\sigma}_{\ell}\right\rangle\right\}$:

$$
\begin{equation*}
|\alpha\rangle=\left|\vec{\sigma}_{l}\right\rangle U^{\vec{\sigma}_{l}} \quad \times \frac{{\underset{\psi}{\vec{\sigma}_{l}}}^{u} \alpha}{} \tag{1}
\end{equation*}
$$

Unitarity guarantees resolution of identity on this subspace:
(2)

Transformation of an operator defined on this subspace:

$$
\begin{equation*}
\hat{B}=\left|\vec{\sigma}_{l}^{\prime}\right\rangle B^{\vec{\sigma}_{l}^{\prime}} \vec{\sigma}_{l}\left\langle\vec{\sigma}_{l}\right|=\left|\alpha^{\prime}\right\rangle \underbrace{\left\langle\alpha^{\prime}\right| \hat{B}|\alpha\rangle\langle\alpha|}_{R^{\alpha^{\prime}}}=\left|\alpha^{\prime}\right\rangle B_{\alpha}^{\alpha^{\prime}}\langle\alpha| \tag{3}
\end{equation*}
$$

Matrix elements: $\quad B_{\alpha}^{\alpha^{\prime}}=\left\langle\alpha^{\prime} \mid \vec{\sigma}_{l}^{\prime}\right\rangle B^{\vec{\sigma}_{l}^{\prime}} \bar{\sigma}_{l}\left\langle\vec{\sigma}_{l} \mid \alpha\right\rangle=U_{\vec{\sigma}_{l}}^{t_{\alpha^{\prime}}} B_{l}^{\vec{\sigma}_{l}^{\prime}} \vec{\sigma}_{l}^{\prime} U^{\bar{\sigma}_{l}}$

If the states $|\alpha\rangle$ are MPS:

$$
\begin{equation*}
|\alpha\rangle=\left|\sigma_{l}\right\rangle \ldots\left|\sigma_{\min }\right\rangle\left(A^{\sigma_{\min }} \ldots A^{\sigma_{l}}\right)_{\alpha}^{\prime} \tag{b}
\end{equation*}
$$

Consider tight-binding chain of spinless fermions:

$$
\begin{equation*}
\hat{H}=\sum_{l=1}^{N} \varepsilon_{l} \hat{c}_{l}^{t} \hat{c}_{l}+\sum_{l=2}^{N} t_{l}\left(\hat{c}_{l}^{t} \hat{c}_{l-1}+\hat{c}_{l-1}^{t} \hat{c}_{l}\right) \tag{I}
\end{equation*}
$$

Goal: find matrix representation for this Hamiltonian, acting in direct product space $V_{1} \otimes V_{2} \otimes \ldots \otimes V_{N}$, while respecting fermionic minus signs:

$$
\begin{aligned}
& \left\{\hat{c}_{l}, \hat{C}_{l^{\prime}}\right\}=0 \quad, \quad\left\{\hat{C}_{l}^{+}, \hat{C}_{\ell^{\prime}}^{\dagger}\right\}=0, \quad\left\{\hat{c}_{l}^{\dagger}, \hat{c}_{l^{\prime}}\right\}=\delta_{l l^{\prime}} \\
& c_{l} C_{l}^{\prime}=-C_{l^{\prime} C_{l}}
\end{aligned}
$$

First consider a single site (dropping the site index ℓ):
Hilbert space: $\operatorname{span}\{|0\rangle,|1\rangle\}$, local index:

$$
\begin{aligned}
& \curvearrowleft \text { local occupancy } \\
& n=\sigma \in\{0,1\}
\end{aligned}
$$

Operator action:

$$
\begin{array}{ll}
\hat{c}^{\dagger}|0\rangle=|1\rangle, & \hat{c}^{+}|1\rangle=0 \\
\hat{c}|0\rangle=0, & \hat{c}|1\rangle=|0\rangle \tag{3b}
\end{array}
$$

The operators $\quad \hat{c}^{\dagger}=\left|\sigma^{\prime}\right\rangle C^{\dagger} \sigma_{\sigma}^{\prime}\langle\sigma| \quad$ and $\quad \hat{c}=\left|\sigma^{\prime}\right\rangle C^{\sigma^{\prime}}\langle\sigma|$
have matrix representations in $V: \quad C^{\dagger \sigma_{\sigma}^{\prime}}=\left\langle\sigma^{\prime}\right| \hat{c} \hat{c}^{\dagger}|\sigma\rangle=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \quad c^{\dagger} 巾_{\sigma^{\prime}}^{\sigma} \quad$ (ha)

$$
C^{\sigma^{\prime}} \sigma=\left\langle\sigma^{\prime}\right| \hat{c}|\sigma\rangle=\left(\begin{array}{ll}
0 & 1 \tag{cb}\\
0 & 0
\end{array}\right) \quad c \hat{k}_{\sigma}^{\sigma} 1
$$

Check: $C^{t} C+C C^{+}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\mathbb{1} v$

$$
C^{+} C^{\dagger}=\left(\begin{array}{ll}
0 & 0 \tag{5}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad, \quad C=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \checkmark
$$

For the number operator, $\hat{n} \equiv \hat{C} \hat{C}$ the matrix representation in V reads:

$$
n \equiv C^{+} C=\left(\begin{array}{ll}
0 & 0 \tag{7}\\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{2}(1-z)
$$

where $Z \equiv\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad$ is representation of $\quad \hat{z}=1-2 \hat{n}=(-1)^{\hat{n}}$
Useful relations:

$$
\begin{equation*}
\hat{c} \hat{z}=-\hat{z} \hat{c}, \quad \hat{c}^{+\hat{z}}=-\hat{z} \hat{c}^{t} \tag{8}
\end{equation*}
$$

'commuting \hat{C} or \hat{C}^{+}past \hat{Z} produces a sign'

Intuitive reason: \hat{c} and \hat{c}^{+}both change \hat{n}-eigenvalue by one, hence change sign of $(-1)^{\hat{n}}$.
For example: $\overbrace{\text { non-zero only when acting on }|0\rangle}^{\hat{c}^{+}} \underbrace{(-1)^{\hat{n}}}_{=(-1)^{0}=1}=\hat{C}^{+}=-\underbrace{(-1)^{\hat{n}}}_{=(-1)^{\prime}=-1} \hat{c}^{+\dagger}$

Similarly:
non-zero only when acting on $|1\rangle=(-1)^{1}=-1 \quad=(-1)^{0}=1$
Now consider a chain of spinless fermions:
Complication: fermionic operators on different sites anticommute: $\quad c_{\ell} c_{\ell^{\prime}}^{+}=-c_{\ell^{\prime}}^{+} C_{\ell}$ for $\ell \neq \ell^{\prime}$
Hilbert space: $\quad \operatorname{span}\left\{|\vec{\sigma}\rangle_{N}=\left|n_{1}, n_{2}, \ldots, n_{N}\right\rangle\right\}$
Define canonical ordering for fully filled state:
$\left|\sigma_{N}\right\rangle \ldots\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle$

$$
\begin{equation*}
\left|n_{1}=1, n_{2}=1, \ldots, n_{N}=1\right\rangle=c_{N}^{t} \ldots c_{2}^{t} c_{1}^{t}\left|V_{a c}\right\rangle \tag{12}
\end{equation*}
$$

Now consider:

$$
\begin{equation*}
\hat{c}_{1}^{\dagger}\left|n_{1}=0, n_{2}=1\right\rangle=\hat{c}_{1}^{+} \hat{c}_{2}^{\dagger}\left|V_{a c}\right\rangle=-\hat{c}_{2}^{\dagger} c_{1}^{\dagger}\left|V_{a c}\right\rangle=-\left|n_{1}=1, n_{2}=1\right\rangle \tag{13}
\end{equation*}
$$

To keep track of such signs, matrix representations in $V_{1} \otimes V_{2}$ need extra 'sign counters', tracking fermion numbers:
$\hat{c}_{1}^{\dagger} \doteq C_{1}^{\dagger} \otimes(-1)^{n_{2}}=C_{1}^{+} \otimes z_{2}$
$C_{1}^{f} \begin{array}{cc}\phi & z_{2}\end{array}$
$\hat{c}_{2}^{+} \equiv 1_{1} \otimes C_{2}^{+} \equiv C_{2}^{+} \quad \begin{array}{r}\text { subscripts denote site number } \\ \text { (shorthand: omit unity) }\end{array}$

Here \otimes denotes a direct product operation; the order (space 1 , space $2, \ldots$) matches that of the indices on the corresponding tensors: $A^{6,62} \ldots$

Check whether

$$
\begin{align*}
& \hat{C}_{1}^{\dagger} \hat{C}_{2}^{\dagger}=-\hat{C}_{2}^{\dagger} \hat{C}_{1}^{\dagger} \text { ? } \tag{16}
\end{align*}
$$

Algebraically:
,
(14) +
(9)

1

Algebraically:

$$
\begin{align*}
\hat{C}_{1}^{\dagger} \hat{C}_{2} & \doteq\left(C_{1}^{t} \otimes Z_{2}\right)\left(\mathbb{1}_{1} \otimes C_{2}\right)^{(14)}=C_{1}^{\dagger} \mathbb{1} \otimes\left(z_{2} C_{2}\right)^{(9)}=-\mathbb{1} C_{1}^{t} \otimes C_{2} z_{2} \tag{18}\\
& =-\left(\mathbb{1}_{1} \otimes C_{2}\right)\left(C_{1}^{\dagger} \otimes z_{2}\right) \doteq-\hat{C}_{2} \hat{C}_{1}^{n} \tag{19}
\end{align*}
$$

Similarly:

More generally: each \hat{c}_{ℓ} or \hat{C}_{ℓ}^{\dagger} must produce sign change when moved past any $\hat{c}_{\ell^{\prime}}$ or $\hat{C}_{\ell^{\prime}}^{\dagger}$, with $l^{\prime}>\ell$. So, define the following matrix representations in $V^{\otimes N}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{N}$:

$$
\begin{align*}
& \hat{C}_{l}^{\dagger} \equiv \mathbb{1}_{1} \otimes \ldots \mathbb{1}_{l-1} \otimes C_{l}^{+} \otimes Z_{l+1} \otimes \ldots z_{N} \equiv C_{l}^{+} Z_{l}^{>} \\
& \hat{C}_{l} \equiv \mathbb{1}_{1} \otimes \ldots \mathbb{1}_{l-1} \otimes C_{l \otimes}^{\otimes} Z_{l+1} \otimes \ldots Z_{N} \equiv C_{l} Z_{l}^{>} \quad \text { ara } \tag{22}\\
& \text { with } \quad \mathbb{Z}_{l}^{>} \equiv \prod_{\otimes l^{\prime}>l} Z_{l}^{\prime} \tag{23}
\end{align*}
$$

'Jordan-Wigner transformation'

Exercise: verify graphically that $\quad \hat{C}_{\ell}^{\prime} \hat{C}_{\ell}=-\hat{C}_{\ell} \hat{C}_{\ell^{\prime}}^{\dagger}$ for $\ell^{\prime}>\ell$.
Solution:

In bilinear combinations, all(!) of the Z 's cancel. Example: hopping term, $\hat{C}_{\ell}^{\dagger} \hat{C}_{\ell-1}$:

since at site ℓ we have $Z_{l \ell}^{Z_{l}}=1, \quad C_{l}^{\dagger} Z_{l}^{(10 a)}=C_{l}^{+}$ non-zero only when acting on $\left.1 \ldots, n_{\ell}=0, \ldots\right\rangle$, and in this subspace, $Z_{l}=1$

Conclusion: $\quad \hat{C}_{\ell}^{\dagger} C_{l-1} \doteq C^{t \ell} C_{l-1} \underset{\text { [using (10b)] }}{\text { and similarly, }} \quad \hat{C}_{l-1}^{\dagger} \hat{C}_{\ell} \doteq C_{l-1}^{t} C_{l}$

Hence, the hopping terms end up looking as though fermions carry no signs at all.

For spinful fermions, this will be different.

Consider chain of spinful fermions. Site index: $l=1, \ldots, N$, spin index: $s \in\{\uparrow, \downarrow\} \equiv\{+,-\}$

$$
\begin{equation*}
\left\{\hat{C}_{l s}, \hat{C}_{l^{\prime} s^{\prime}}\right\}=0 \quad, \quad\left\{\hat{C}_{l s}^{+}, \hat{C}_{l^{\prime} s^{\prime}}^{\dagger}\right\}=0, \quad\left\{\hat{C}_{l s}^{\dagger}, \hat{c}_{l l^{\prime} s^{\prime}}\right\}=\delta_{l l^{\prime}} \delta_{s s^{\prime}} \tag{1}
\end{equation*}
$$

Define canonical order for fully filled state:

$$
\begin{equation*}
\hat{C}_{N \downarrow}^{\dagger} \hat{C}_{N \uparrow}^{\dagger} \ldots \hat{C}_{2 \downarrow}^{\dagger} \hat{C}_{2 \uparrow}^{\dagger} \hat{C}_{1 \downarrow}^{\dagger} \hat{C}_{1 \uparrow}^{\dagger}\left|V_{a c}\right\rangle \tag{2}
\end{equation*}
$$

First consider a single site (dropping the index ℓ):

Hilbert space: $=\operatorname{span}\{|0\rangle,|\downarrow\rangle,|\uparrow\rangle,|\uparrow \downarrow\rangle\}$, local index: $\sigma \in\{0, \downarrow, \uparrow, \uparrow \downarrow\}$
constructed via: $|0\rangle \equiv\left|V_{a c}\right\rangle, \quad|\downarrow\rangle \equiv \hat{C}_{\downarrow}^{\dagger}|0\rangle$,

$$
\begin{equation*}
|\uparrow\rangle \equiv \hat{C}_{\uparrow}^{\dagger}|0\rangle, \quad|\uparrow \downarrow\rangle \equiv \hat{C}_{\downarrow}^{\dagger} C_{\uparrow}^{+}|0\rangle=\hat{C}_{\downarrow}^{\dagger}|\uparrow\rangle=-\hat{C}_{\uparrow}^{+}|\downarrow\rangle \tag{4}
\end{equation*}
$$

We seek a matrix representation of $\hat{C}_{s}^{\dagger}, \hat{C}_{S} \hat{Z}_{S}$ in direct product space $\tilde{V} \equiv V_{\uparrow} \otimes V_{\downarrow}$. (Matrices acting in this space will carry tildes.)

$$
\begin{aligned}
& \hat{z}_{\uparrow} \doteq z_{\uparrow} \otimes \mathbb{I}_{\downarrow}=\left(\begin{array}{ll}
1 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & \\
& 1 & -1 \\
& & -1
\end{array}\right) \equiv \tilde{z}_{\uparrow}
\end{aligned}
$$

$$
\begin{align*}
& \hat{C}_{\uparrow}^{\dagger} \doteq C_{\uparrow}^{+} \otimes Z_{\downarrow}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & -1
\end{array}\right)=\binom{1}{1-1} \equiv \tilde{C}_{\uparrow}^{\dagger} \\
& \hat{C}_{\uparrow} \doteq C_{\uparrow} \otimes z_{\downarrow}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 1 \\
-1
\end{array}\right)=\left(-\left.\right|^{\prime}-1\right) \equiv \tilde{C}_{\uparrow} \tag{II}\\
& \hat{C}_{\downarrow}^{\dagger} \equiv \mathbb{1}_{\uparrow} \otimes C_{\downarrow}^{\dagger}=\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll|l}
0 & 0 & \\
1 & 0 & \\
\hline & 0 & 0 \\
1 & 0
\end{array}\right) \equiv \tilde{C}_{\downarrow}^{\dagger} \tag{12}\\
& \hat{C}_{\downarrow} \doteq \mathbb{1}_{\uparrow} \otimes C_{\downarrow}=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll|l}
0 & 1 & \\
0 & 0 & 0
\end{array}\right) \equiv \hat{C}_{\downarrow} \tag{12}
\end{align*}
$$

$$
\begin{equation*}
\hat{c}_{b} \equiv 1_{1} \otimes c_{b}=(1,1)(10.0)=\left(\frac{0}{0} 00_{0}^{0}\right) \equiv \vec{c}_{b} \tag{12}
\end{equation*}
$$

The factors Z_{s} guarantee correct signs. For example $\quad \tilde{C}_{\uparrow}^{\dagger} \tilde{C}_{\downarrow}=-\tilde{C}_{\downarrow} \tilde{C}_{\uparrow}^{f}$: (fully analogous to MPS-II.1.17)

Algebraic check:

$$
\left(\begin{array}{ll}
1 & \\
\hline 1-1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 \\
0 & 0 & \\
\hline & 0 & 1 \\
& 0 & 0
\end{array}\right)=\left(\begin{array}{ll}
& 1 \\
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll|l}
0 & 1 & \\
0 & 0 & \\
\hline & 0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
& \\
\hline 0 & -1 \\
0 & 0
\end{array}\right) \vee \quad(14)
$$

Remark: for sinful fermions (in constrast to spinless fermions, compare MPS-II.28), we have

$$
\begin{equation*}
\tilde{C}_{S}^{\dagger} \tilde{Z} \neq \tilde{C}_{S}^{+} \quad \text { and } \quad \tilde{z} \tilde{C}_{s} \neq \tilde{C}_{s} \tag{15}
\end{equation*}
$$

For example, consider $S=\uparrow$; action in $V_{\uparrow} \otimes V_{\downarrow}$:

Now consider a chain of spinful fermions (analogous to spinless case, with \widetilde{V}_{ℓ} instead of V_{ℓ}).
Each $\hat{C}_{l S}$ or $\hat{C}_{l S}^{\dagger}$ must produce sign change when moved past any $\hat{C}_{\ell^{\prime} s^{\prime}}$ or $\hat{C}_{\ell^{\prime} s^{\prime},}^{+}$with $\quad \ell^{\prime}>\ell$.
So, define the following matrix representations in $\quad \tilde{V}^{\otimes N}=\widetilde{V}_{1} \otimes \widetilde{V}_{2} \otimes \ldots \otimes \widetilde{V}_{N}$:

$$
\begin{align*}
& \hat{C}_{l}^{\dagger} \equiv \tilde{\mathbb{1}}_{1} \otimes \ldots \tilde{\mathbb{1}}_{l-1} \otimes \tilde{C}_{l}^{\dagger} \otimes \tilde{z}_{l+1} \otimes \ldots \tilde{z}_{N} \equiv \tilde{C}_{l}^{\dagger} \tilde{z}_{l}^{>} \tag{17}\\
& \hat{C}_{l} \equiv \tilde{\mathbb{1}}_{1} \otimes \ldots \tilde{\mathbb{1}}_{l-1} \otimes \tilde{C}_{l}^{\otimes} \tilde{z}_{l+1} \otimes \ldots \tilde{z}_{N} \equiv \tilde{C}_{l} \tilde{z}_{l}^{>} \quad \text { 'Jordan-Wigner } \tag{18}
\end{align*}
$$

with $\quad \tilde{z}_{\ell} \equiv \prod_{\otimes \ell^{\prime}>\ell^{\prime}} \tilde{Z}_{\ell^{\prime}}=\prod_{\otimes \ell^{\prime}>\ell} z_{\Gamma \ell^{\prime} \otimes}^{\otimes} z_{\downarrow \ell^{\prime}} \quad$ 'Z-string'

In bilinear combinations, most (but not all!) of the Z 's cancel.
Example: hopping term $\hat{C}_{\ell s}^{\dagger} \hat{C}_{\ell-1 S}$: (sum over implied)

initial charge:

$$
\text { Bond } \rightarrow \text { indicates sum } \sum_{S}
$$

Convention: annihilation: outgoing -1 or incoming +1
Creation: outgoing +1 or incoming -1

Similarly:

