1. Matrix elements and expectation values

One-site operator

$$
\begin{equation*}
\hat{o}_{[l]}=\left|\sigma_{l}^{\prime}\right\rangle O^{\sigma_{l}^{\prime}} \sigma_{l}<\sigma_{l} \mid \quad \hat{\sigma}_{l}^{\sigma_{l}} \tag{1}
\end{equation*}
$$

E.g. for spin $1 / 2: \quad\left(S_{z}\right)_{\sigma}^{\sigma^{\prime}}=\frac{1}{2}\left(\begin{array}{ll}1 & -1\end{array}\right),\left(S_{+}\right)_{\sigma}^{\sigma^{\prime}}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \quad,\left(S_{-}\right)_{\sigma}^{\sigma^{\prime}}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
(2)

Consider two states in site-canonical form for site $\ell:$

$$
\begin{align*}
& |\psi\rangle=\left(\sigma_{N}\right)\left(A^{\sigma_{1}} \ldots A^{\sigma_{l-1}} M^{\sigma_{l}} B^{\sigma_{l+1}} \ldots B^{\sigma_{N}}\right) \tag{3}\\
& |\tilde{\psi}\rangle=\left(\sigma_{N}^{\prime}\right)\left(\tilde{A}^{\sigma_{l}^{\prime}} \ldots \tilde{A}_{l-1}^{\sigma_{l-1}^{\prime}} \tilde{M}_{l}^{\sigma_{l}^{\prime}} \tilde{B}^{\sigma_{l+1}^{\prime}} \ldots \tilde{B}^{\sigma_{N}^{\prime}}\right) \tag{4}
\end{align*}
$$

Matrix element:

Close zipper from left using $\quad C_{[\ell-1]}$ from left-normalized A^{\prime} 's [see MPS-I.1-(15)], and from right using $D_{\{Q+1\}}$ from right-normalized $B^{\prime} s$ [analogous to MPS-I.1-(20)].

$$
\begin{equation*}
=\tilde{M}_{\beta_{\sigma_{l}^{\prime} \alpha^{\prime}}^{\prime}}^{\dagger} C_{[l-1] \alpha}^{\alpha^{\prime}} M^{\alpha \sigma e \beta} D_{[l+1] \beta}^{\beta^{\prime}} O_{\sigma_{l}}^{\sigma_{l}^{\prime}} \tag{6}
\end{equation*}
$$

Now consider the expectation value, $\langle\psi| \hat{O}|\psi\rangle$ (ie. drop all tilde's). The left-normalization of A^{\prime} 's guarantees that $C_{[\ell-1]}=\mathbb{1}$, and right-normalization of B 's that $D_{[\ell+1]}=\mathbb{1}$.

Hence $\quad\langle\psi| \hat{O}|\psi\rangle=M_{\beta_{l}^{\prime} \alpha}^{\dagger} M^{\alpha \sigma_{l} \beta} O_{\sigma_{l}}^{\sigma_{l}^{\prime}}$

Two-site operator (e.g. for spin chain: $\vec{S}_{l} \cdot \vec{S}_{l+1}$) $=s^{z} s^{z}+s^{x} s^{y}+s^{y} s^{y}$

$$
\begin{equation*}
\hat{O}_{[l, l+1]}=\left|\sigma_{l+1}^{\prime}\right\rangle\left|\sigma_{l}^{\prime}\right\rangle O_{l}^{\sigma_{l}^{\prime} \sigma_{l+1}^{\prime}} \sigma_{l} \sigma_{l+1}\left\langle\sigma_{l}\right|\left\langle\sigma_{l+1}\right| \tag{10}
\end{equation*}
$$

Matrix elements:

Consider a quantum system composed of two subsystems, A and B, with dimensions D and D^{\prime}, and orthonormal bases $\left\{|\alpha\rangle_{A}\right\}$ and $\left\{|\beta\rangle_{B}\right\}$. To be specific, think of physical basis: $\quad|\alpha\rangle_{A} \equiv\left|\vec{\sigma}_{A}\right\rangle, \quad|\beta\rangle_{\mathcal{B}} \equiv\left|\vec{\sigma}_{B}\right\rangle$

General form of pure state on $A \cup \mathbb{Z}$:

$$
\begin{align*}
&|\psi\rangle=|\beta\rangle_{B}|\alpha\rangle_{A} \psi^{\alpha \beta} \\
&\langle\psi|=\underbrace{\psi_{\beta^{\prime} \alpha^{\prime}}^{\dagger}}_{\equiv} \frac{\alpha^{\prime}}{\alpha^{\prime} \mid}\left\langle\beta^{\prime}\right| \tag{3}\\
& \psi^{\alpha^{\prime} \beta^{\prime}}
\end{align*}
$$

Density matrix: $\quad \hat{\rho}=|\psi\rangle\langle\psi|$

Reduced density matrix of subsystem $\&$:

$$
\begin{align*}
\hat{\rho}_{\alpha} & =T_{\gamma_{B}}|\psi\rangle\langle\psi|=\sum_{\bar{\beta}}\langle\bar{\beta} \mid \beta\rangle_{B}|\alpha\rangle_{A} \psi^{\alpha \beta} \psi_{\beta^{\prime} \alpha^{\prime}}^{\dagger}\left\langle\left.\alpha^{\prime}\right|_{B}\left\langle\beta^{\prime} \mid \bar{\beta}\right\rangle_{B}\right. \tag{5}\\
& =|\alpha\rangle_{A}\left(\rho_{A}\right)_{\alpha^{\prime}}^{\alpha}\left\langle\alpha^{\prime}\right|
\end{align*}
$$

with

$$
\begin{align*}
& \left(\rho_{A}\right)_{\alpha^{\prime}}^{\alpha}=\sum_{\bar{\beta}} \underbrace{\langle\bar{\beta} \mid \beta\rangle_{\mathcal{B}}}_{\delta_{\bar{\beta}}} \psi^{\alpha \beta} \psi_{\beta^{\prime} \alpha^{\prime}}^{\dagger} \underbrace{\left\langle\beta^{\prime} \mid \bar{\beta}\right\rangle_{\mathcal{B}}}_{\delta \beta_{\bar{\beta}}}=\psi^{\alpha \beta} \psi_{\beta \alpha^{\prime}}^{\dagger} \equiv\left(\psi \psi^{\dagger}\right)_{\alpha^{\prime}}^{\alpha} \tag{6}\\
& \hat{\rho}_{A}= \tag{7}
\end{align*}
$$

Analogously: reduced density matrix of subsystem :

$$
\begin{equation*}
\left.\hat{\rho}_{B}=T_{r_{A}}|\psi\rangle\langle\psi|=\left.\right|_{\beta}\right\rangle_{B}\left(\rho_{B}\right)_{\beta^{\prime}}^{\beta}\left\langle\beta^{\prime}\right| \quad \text { with } \quad\left(\rho_{B}\right)_{\beta^{\prime}}^{\beta}= \tag{8}
\end{equation*}
$$

Diagrammatic derivation:

$$
\hat{\rho}_{\beta}=\left(\begin{array}{l}
\alpha^{\alpha^{\prime} \psi^{t} \beta^{\prime}} \tag{9}\\
\hat{\alpha}_{\alpha} \psi \lambda_{\beta}
\end{array}=\psi_{\beta}^{\beta^{\prime}} \psi^{\alpha \beta} \psi_{\beta^{\prime}}^{t}=\left(\psi^{t} \psi\right)_{\beta^{\prime}}^{\beta^{\prime}}\right.
$$

Algebraic derivation:

$$
\left(\rho_{\xi}\right)_{\beta^{\prime}}^{\beta}=\sum_{\bar{\alpha}} \underbrace{\langle\bar{\alpha} \mid \alpha\rangle_{\alpha}}_{\delta^{\bar{\alpha}} \alpha} \psi^{\alpha \beta} \psi_{\beta^{\prime} \alpha^{\prime}}^{\dagger} \underbrace{\left\langle\alpha^{\prime} \mid \bar{\alpha}\right\rangle_{A}}_{\delta^{\alpha^{\prime}}}=\psi_{\beta_{\alpha}^{\prime}}^{\dagger} \psi^{\alpha \beta} \equiv\left(\psi^{\dagger} \psi\right)_{\beta^{\prime}}^{\beta} \text { (10) }
$$

Singular value decomposition

Use SVD to find basis for A and B which diagonalizes ψ :
SVD of ψ :

$$
\psi=u s v^{\dagger}
$$

With indices:

$$
\begin{equation*}
\psi^{\alpha \beta}=u^{\alpha} S_{\hat{4}}^{\lambda \lambda^{\prime}} V_{\lambda^{\prime}}^{\dagger} \beta \tag{II}
\end{equation*}
$$

Hence

$$
\operatorname{ding}\left(S_{1}, S_{2}, \ldots\right)
$$

Hence

$$
\begin{equation*}
|\psi\rangle=\left|\lambda^{\prime}\right\rangle_{\mathcal{B}}|\lambda\rangle_{A} S^{\lambda \lambda^{\prime}}=\sum_{\lambda}|\lambda\rangle_{\mathcal{B}}|\lambda\rangle_{A} S_{\lambda} \tag{12}
\end{equation*}
$$

are orthonomal sets of states for \mathcal{A} and \mathcal{B}, and can be extended to yield orthonormal bases for A and B if needed.

Orthonormality is guaranteed by
$u^{\dagger} u=\mathbb{I}$ and $v^{\dagger} v=\mathbb{R} \quad:$

$$
\begin{align*}
& \left\langle\lambda^{\prime} \mid \lambda\right\rangle_{A}={ }_{u^{+}}^{\alpha \rightarrow \lambda} \lambda^{u}=u_{\alpha}^{+\lambda^{\prime}} u_{\lambda}^{\alpha}=1_{\lambda}^{\lambda^{\prime}} \tag{14}
\end{align*}
$$

Restrict Σ_{λ} to the $\quad \tau$ non-zero singular values:

$$
\begin{equation*}
|\psi\rangle=\sum_{\lambda=1}^{r}|\lambda\rangle_{g}|\lambda\rangle_{A} S_{\lambda} \text { 'Schmidt decomposition' } \tag{16}
\end{equation*}
$$

If $r=1$: 'classical' state. If $r \geqslant 1$: 'entangled state'

In this representation, reduced density matrices are diagonal:

$$
\begin{equation*}
\hat{\rho}_{A}=T_{\mathbb{Q}}|\psi\rangle\langle\psi|=\sum_{\lambda} \mid \lambda_{A}\left(S_{\lambda}\right)_{A}^{2}\langle\lambda| \tag{17}
\end{equation*}
$$

$$
\begin{align*}
& \left(\psi \psi^{\dagger}\right),\left(\psi^{\dagger} \psi\right) \text { with } \psi^{\lambda \lambda}=s^{\lambda} \mathbb{1}^{\lambda \lambda} \\
& \hat{\rho}_{\mathcal{B}}=T_{\tau_{A}}|\psi\rangle\langle\psi|=\sum_{\lambda}|\lambda\rangle_{g}\left(S_{\lambda}\right)^{2}\langle\lambda| \tag{18}
\end{align*}
$$

Entanglement entropy:

$$
\begin{equation*}
S_{A / B}=-\sum_{\lambda=1}^{r}\left(S_{\lambda}\right)^{2} \ln n_{2}\left(S_{\lambda}\right)^{2} \tag{19}
\end{equation*}
$$

How can one approximate ψ by cheaper $\tilde{\psi}$?

$$
|\psi\rangle=|\beta\rangle|\alpha\rangle \psi^{\alpha \beta}
$$

$$
\begin{equation*}
\||\psi\rangle\left\|_{2}^{2} \equiv|\langle\psi \mid \psi\rangle|^{2}=\sum\left|\psi^{\psi \mid}\right|^{2}=\right\| \psi \|_{F}^{2} \tag{20}
\end{equation*}
$$

Define truncated state using $v^{\prime}(<r)$ singular values:

$$
\begin{equation*}
|\tilde{\psi}\rangle \equiv \sum_{\lambda=1}^{r 1}|\lambda\rangle_{\mathcal{D}}|\lambda\rangle_{A} s_{\lambda} \tag{21}
\end{equation*}
$$

(If $|\tilde{\psi}\rangle$ should be normalized, rescale S_{λ} by $\sum_{\lambda=1}^{r^{\prime}}\left(S_{\lambda}\right)^{2} \quad$.)
Truncation error:

$$
\begin{align*}
& \||\psi\rangle-|\tilde{\psi}\rangle \|_{2}^{2}=\langle\psi \mid \psi\rangle+\langle\tilde{\psi} \mid \tilde{\psi}\rangle-2 \operatorname{Re}\langle\tilde{\psi} \mid \psi\rangle \tag{23}\\
& =\sum_{\lambda=1}^{r}\left(s_{\lambda}\right)^{2}+\sum_{\lambda=1}^{r^{\prime}}\left(s_{\lambda}\right)^{2}-2 \sum_{\lambda=1}^{r^{\prime}}\left(s_{\lambda}\right)^{2}=\sum_{\lambda=r^{\prime}+1}^{T}\left(s_{\lambda}\right)^{2} \\
& =\text { sum of squares of discarded singular values }
\end{align*}
$$

Useful to obtain "cheap" representation of $|\psi\rangle$ if singular values decay rapidly.

Consider a quantum system, subdivided into parts A and B, defined on sites 1 to ℓ and $\ell+1$ to N. Let $\left\{|\alpha\rangle_{A}\right\}$ be a general basis for A, and $\left\{|\beta\rangle_{B}\right\}$ a general basis for B.

$$
\begin{aligned}
& |\alpha\rangle_{A}=\left|\bar{\sigma}_{A}\right\rangle A^{\bar{\sigma}_{A}} \alpha, \quad \underset{\sigma_{1} \ldots \sigma_{l}}{\rightarrow} \equiv \vec{\sigma}_{A} \rightarrow \alpha \\
& |\beta\rangle_{\mathscr{B}}=\left|\vec{\sigma}_{B}\right\rangle B_{\beta} \vec{\sigma}_{B} \\
& \beta \underset{\sigma_{\ell+1}}{\operatorname{Tin}_{\sigma_{N}}} \\
& \equiv \\
& \beta \nleftarrow \stackrel{\rightharpoonup}{\sigma}_{B}
\end{aligned}
$$

when A and B are unitary,

$$
\left(A^{+} A\right)_{\alpha}^{\alpha^{\prime}}=\mathbb{1}_{\alpha}^{\alpha^{\prime}}, \quad\left(B B^{+}\right)_{\beta}^{\beta^{\prime}}=\mathbb{1}_{\beta}^{\beta^{\prime}}
$$

Consider the pure state

$$
\begin{aligned}
& \langle\psi|=\psi_{\beta^{\prime} \alpha}^{+}\left\langle\alpha^{\prime}\right|{ }_{\alpha} \beta^{\prime}\left|=B_{\vec{\sigma}_{B}}^{\dagger} \beta \psi_{\beta^{\prime} \alpha^{\prime}}^{\dagger} A^{\dagger}{ }_{\alpha_{\sigma}^{\prime}}^{\prime} \vec{\sigma}_{A}^{\prime}\right|\left\langle\vec{\sigma}_{B}^{\prime}\right| \\
& \vec{\sigma}_{A}^{\prime} \underset{A^{+}}{\longrightarrow} \underset{\psi^{+}}{\longrightarrow} \underset{B^{+}}{\rightarrow \vec{\sigma}_{B}^{\prime}}
\end{aligned}
$$

The reduced density matrix of \mathbb{A} is given by

$$
\left(\rho_{\alpha}\right)_{\alpha^{\prime}}^{\alpha}=\left(\psi B^{\dagger} B \psi^{\dagger}\right)_{\alpha^{\prime}}^{\alpha}=\left(\psi \psi^{\dagger}\right)^{\alpha}{ }_{\alpha^{\prime}} \quad \text { (as before). }
$$

Diagrammatic derivation:

Exercise: derive this result algebraically. Convince yourself that the above diagrams provide a concise summary of your deviation!

Solution:

$$
\begin{aligned}
& \hat{\rho}_{\phi}=T_{\sigma_{g}}|\psi\rangle\langle\psi|=\left|\vec{\sigma}_{\neq}\right\rangle A_{\sigma_{\sigma}} \vec{\sigma}_{\alpha}\left(\rho_{A}\right)_{\alpha}^{\alpha} A^{\dagger} \alpha_{\sigma_{\gamma}^{\prime}}^{\prime}\left\langle\vec{\sigma}_{A}^{\prime}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\psi^{\alpha \beta} \underbrace{\left(B B^{\dagger}\right)^{\beta^{\prime}}}_{\mathbb{1}_{\beta}^{\beta^{\prime}}} \psi_{\beta^{\prime} \alpha^{\prime}}=\left(4 \psi^{\dagger}\right)^{\alpha}{ }^{\prime}
\end{aligned}
$$

