1. Overlaps and normalization $\langle\tilde{\psi} \mid \psi\rangle$

Consider overlap of 2-site MPS:

$$
\begin{align*}
& \text { dummy index } \\
& |\beta\rangle=\left|\sigma_{2}\right\rangle\left(\sigma_{1}\right\rangle A^{1 \sigma_{1}} \alpha B^{\alpha \sigma_{2}} \beta \tag{1}\\
& \langle\beta^{\prime}(\beta)=\underbrace{A^{\prime \prime \sigma_{1}^{\prime}} \alpha^{\prime} B^{\alpha^{\prime} \sigma_{2}^{\prime}} \beta^{\prime}}_{\text {m }}\langle\underbrace{\left.\sigma_{1}^{\prime} \mid\left\langle\sigma_{2}^{\prime}\right| \sigma_{2}\right)\left(\sigma_{1}\right)}_{\sigma_{11}^{\prime}} A^{\prime \sigma_{2}^{\prime}} \underbrace{\alpha} B^{\alpha \sigma_{2}} \underbrace{\beta} \tag{2}
\end{align*}
$$

reorder A^{+}'s :

$$
\begin{equation*}
B^{+\beta^{\prime}} \sigma_{2}^{\prime} \alpha^{\prime} A^{t} \alpha_{1}^{\prime}, A^{\prime} \sigma_{1}^{\prime} \alpha B^{\alpha \sigma_{2}} \beta \tag{3}
\end{equation*}
$$

Use diagrammatic rules to keep track of contraction patterns:

Bra: $\quad\langle\beta|=\langle\alpha|<\sigma \mid \overline{A^{\alpha \sigma}} \equiv A^{\dagger} \beta_{\sigma \alpha}\langle\alpha|<\sigma \mid$
(6)

We accommodated complex conjugation via Hermitian conjugation and index transposition:

$$
A^{+} \beta_{\sigma \alpha}=\bar{A}_{\beta}^{\alpha \sigma}
$$

This moves upstairs indices downstairs and vice versa, ie. invents all arrows in diagram.
Note that in diagram vertex, α sits left, β_{\sim}^{β} right, whereas on $A^{\dagger}, ~ \beta$ sits left, α right. This convention may seem initially awkward, but it greatly simplifies the structure of diagrams representing overlaps.

Generalization to many-site MPS:
$\underbrace{\left|\sigma_{N}\right\rangle \ldots\left|\sigma_{2}\right\rangle\left|\sigma_{1}\right\rangle} \quad \underbrace{\checkmark}$ dummy index
$|\psi\rangle=|\vec{\sigma}\rangle_{N} A_{[1]}^{1 \sigma_{1}} \alpha A_{[2]}^{\alpha \sigma_{2}} \underbrace{\beta} A_{[3]}^{\sigma_{3}} \gamma \ldots A_{[N]}^{\mu \sigma_{N}}{ }_{\tau}{ }^{1}$
Square brackets indicate that each site has a different A matrix. We will often omit them and use the shorthand, $A^{\alpha \sigma_{\beta}} \equiv A_{[l]}^{\alpha \sigma_{l}}$, since the ℓ on σ_{l} uniquely identifies the site.

\equiv
shorthand: omit indices

Recipe for ket formula: as chain grows, attach new matrices on the right (in same order as vertices in diagram); resulting in a matrix product structure.

We expressed all matrices via their Hermitian conjugates by transposing indices and inverting arrows. To recover a matrix product structure, we ordered the Hermitian conjugate matrices to appear in the opposite order as the vertices in the diagram.

Recipe for bra formula: as chain grows, attach new matrices A^{\dagger} on the left, opposite to vertex order in diagram.

Now consider overlap between two MPS:

Exercise: derive this result algebraically from (7), (9),
If we would perform the matrix multiplication first, for fixed $\vec{\sigma}$, and then sum over $\vec{\sigma}$, we would get d^{N} terms, each of which is a product of $2 N$ matrices. Exponentially costly!

But calculation becomes tractable if we rearrange summations:

Diagrammatic depiction: 'closing zipper' from left to right.

The set of two-leg tensors $C_{[\ell]}$ can be computed iteratively:

Initialization:

$$
\begin{equation*}
C_{[0]}\{_{<x}^{x}=\underbrace{}_{\text {(identity) }} \tag{14}
\end{equation*}
$$

$$
C_{[0] 1}^{1}=1
$$

Iteration step:

$$
C_{[l]_{\lambda}}^{\lambda^{\prime}}=\tilde{A}_{\lambda_{l}^{\prime}}^{\dagger}{ }_{\sigma}^{\prime} C_{[\ell-1] \eta}^{\eta^{\prime}} A_{\text {(15) }}^{\eta \sigma_{\ell}}
$$

Final answer:

$$
\begin{equation*}
\langle\tilde{\psi} \mid \psi\rangle=C_{[N]}^{1} \tag{16}
\end{equation*}
$$

Cost estimate (if all A's are $D_{\gamma} D$):

Total cost:

$$
\begin{equation*}
\approx D^{3} d \cdot N \tag{18}
\end{equation*}
$$

Remark: a similar iteration scheme can be used to 'close zipper from right to left':

Normalization $\langle\psi \mid \psi\rangle=$?

Use above scheme, with $\quad \tilde{A}=A$

Left-normalization

A 3-leg tensor $A^{\alpha \sigma} \beta$ is called 'left-normalized' if it satisfies

$$
A^{\dagger} A=\mathbb{1} \text {. Explicitly: } \quad\left(A^{\dagger} A\right)_{\beta}^{\beta^{\prime}}=A^{\dagger} \beta_{\sigma \alpha}^{\prime} A_{\beta}^{\alpha \sigma}=\mathbb{1}_{\beta}^{\beta^{\prime}}
$$

Graphical notation for left-normalization: draw 'left-pointing diagonals' at vertices

When all A's are left-normalized, closing the zipper left-to-right is easy, since all reduce to identity matrices:

Hence:

When all matrices of a MPS are left-normalized, the matrices for site 1 to any site $\ell=1, \ldots, N$ define an orthonormal state space:

$|\lambda\rangle=\left|\vec{\sigma}_{l}\right\rangle\left[A^{\sigma_{1}} A^{\sigma_{2}} \ldots A^{\sigma_{l}}\right]_{\lambda}^{1}$

Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows on Ret diagram. Sometimes it is useful to build it up from right to left, running left-pointing arrows.

Building blocks:

Iterating this, we obtain kets and bras of the form

$$
\text { A three-leg terror } \quad B_{\beta}{ }^{\sigma \alpha} \quad \text { is called right-normalized if it satisfies }
$$

$$
\begin{equation*}
B B^{\dagger}=\mathbb{1} . \quad \text { Explicitly: } \quad\left(B B^{\dagger}\right)_{\beta}^{\beta^{\prime}}=B_{\beta}^{\sigma \alpha} B_{\alpha \sigma}^{\dagger} \beta^{\prime}=\mathbb{1}_{\beta}^{\beta^{\prime}} \tag{31}
\end{equation*}
$$

Graphical notation for right-normalization: draw 'right-pointing diagonals' at vertices

$$
\begin{aligned}
& |\psi\rangle=\left|\sigma_{N}\right\rangle\left|\sigma_{N-1}\right\rangle \ldots\left|\sigma_{1}\right\rangle B_{1}{ }^{\sigma_{1} \lambda} \ldots \underbrace{B_{\beta} \sigma_{N-1}^{\alpha}} \underbrace{B_{\alpha} \sigma_{N}} \\
& \cdots \stackrel{\lambda}{\hbar} \stackrel{\beta}{\leftarrow} \stackrel{\alpha}{\leftarrow} \boldsymbol{f}^{x}
\end{aligned}
$$

$$
\begin{align*}
& |\alpha\rangle=\left|\sigma_{N}\right\rangle B_{\alpha}^{\sigma_{N} \mid} \tag{25}\\
& \left.|\beta\rangle=\| \sigma_{N}\right)\left(\sigma_{N-1}\right) B_{\beta}{ }_{\zeta}^{\sigma_{N-1} \alpha} B_{\alpha}^{\sigma_{N}} \tag{26}\\
& \text { left-to-right index order as in diagram } \\
& \langle\alpha|=\underbrace{B_{1 \sigma_{N} \alpha}^{B_{N}}\left\langle\sigma_{N}\right|}_{\equiv \overline{B \alpha_{\alpha}}{ }^{\sigma_{N} \mid}} \tag{27}\\
& \langle\beta|=B_{\mid \sigma_{N}}^{+} B_{\alpha \sigma_{N-1}}^{\beta}\left\langle\sigma_{N-1}\right|\left\langle\sigma_{N}\right| \tag{28}
\end{align*}
$$

$\beta^{\prime} \longrightarrow$
When all B's are right-normalized, closing the zipper right-to-left is easy:

When all matrices of a MPS are right-normalized, the matrices for site N to any site $\ell=1, \ldots, N$ define an orthonormal state space:

$|\lambda\rangle=\left|\vec{\sigma}_{l}\right\rangle\left[B^{\sigma_{l}} B^{\sigma_{l+1}} \ldots B^{\sigma_{N}}\right]_{\lambda}{ }^{\prime}$

Conclusion: MPS built purely from left-normalized A 's or purely from right-normalized B 's are automatically normalized to 1 . Shorter MPSs built on subchains automatically define orthonormal state spaces.

Any matrix product can be expressed through different matrices without changing the product:

$$
M M^{\prime}=\underbrace{(M u)}_{\tilde{M}} \underbrace{\left.u^{-1} M^{\prime}\right)}_{\tilde{M}^{\prime}}=\tilde{M} \tilde{M}^{\prime} \quad \text { 'gauge freedom' }
$$

Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms:

Left-canonical (Ic-) MPS:

$|\psi\rangle=|\vec{\sigma}\rangle_{N}\left(A^{\sigma_{1}} \ldots A^{\sigma_{N}}\right)$
$A^{+} A=\mathbb{1}$

Right-canonical (rc-) MPS:

$|\psi\rangle=|\vec{\sigma}\rangle_{N}\left(B^{\sigma_{1}} \ldots B^{\sigma_{N}}\right)$
$B B^{\dagger}=\mathbb{1}$

Site-canonical (sc-) MPS:

$|\psi\rangle=|\bar{\sigma}\rangle_{N}\left(A^{\sigma_{1}} \ldots A^{\sigma_{l-1}} M_{[l]}^{\sigma_{l}} B^{\sigma_{l+1}} \ldots B^{\sigma_{N}}\right)=|\beta\rangle_{R}\left|\sigma_{l}\right\rangle|\alpha\rangle_{L} M^{\alpha \sigma_{l} \beta}$

Bond-canonical (bc-) (or mixed) MPS:

$$
\begin{equation*}
|\psi\rangle=|\vec{\sigma}\rangle_{N}\left(A^{61} \ldots A^{\sigma l}\right)_{\alpha} S_{[l]_{\beta}}^{\alpha \beta}\left(B^{\sigma_{l+1}} \ldots B^{\sigma}\right)=\sum_{\alpha \beta}|\alpha\rangle_{R} S_{[R]}^{\alpha \beta}|\beta\rangle_{L} \tag{4}
\end{equation*}
$$

How can we bring an arbitrary MPS into one of these forms?
Transforming to left-normalized form

Given:

$$
\begin{equation*}
|\psi\rangle=|\vec{\sigma}\rangle_{N}\left(M^{\sigma_{1}} \ldots M^{\sigma_{N}}\right) \tag{5}
\end{equation*}
$$

[or with index: $\quad\left|S_{N}\right\rangle=x \rightarrow{ }_{N \rightarrow T} S_{N}$]
Goal : left-normalize M^{61} to $M^{\sigma} \ell-1$

Goal : left-normalize
M^{61} to $M^{\sigma} l-1$

Strategy: take a pair of adjacent tensors, $M M^{\prime}$, and use SVD,

$$
\begin{equation*}
M M^{\prime}=U S V^{\dagger} M^{\prime} \equiv A \tilde{M}, \quad \text { with } \quad A=U, \tilde{M}=S V^{+} M^{\prime} \tag{7}
\end{equation*}
$$

$M_{\beta}^{\alpha \sigma} M^{\beta \sigma^{\prime}} \alpha^{\prime}=\left(U^{\alpha \sigma}{ }_{\lambda}\right)\left(S^{\lambda} \lambda^{\prime} V^{\dagger} \lambda^{\prime} M^{\beta \sigma^{\prime}} \alpha^{\prime}\right)=A^{\alpha \sigma} \lambda \hat{M}^{\lambda \sigma^{\prime}}{ }^{\prime}$
The properly

$$
\begin{equation*}
u^{+} u=1 \quad \text { ensures left-normalization: } \quad A^{+} A=1 \tag{10}
\end{equation*}
$$

Truncation, if desired, can be performed by discarding some of The smallest singular values,

$$
\sum_{\lambda=1}^{\gamma} \rightarrow \sum_{\lambda=1}^{\gamma^{\prime}} \quad \text { (but (10) remains valid!) }
$$

Note: instead of SVD, we could also me QR (cheaper!)

By iterating, starting from $M^{\sigma_{1}} M^{\sigma_{2}}$, we left-normalize $M^{\sigma_{1}}$ to $M^{\sigma_{\ell-1}}$.

To left-normalize the entire MPS, choose $\quad l=N$.
As last step, left-normalize last site using SVD on final \tilde{M} :

Ic-form: $\quad|\psi\rangle=\mid \vec{\sigma})_{N}\left(A^{\sigma_{1}} \ldots A^{\sigma_{N}}\right) S_{1}$
diamond indicates single number

Ic-form: $\quad|\psi\rangle=\mid \vec{\sigma})_{N}\left(A^{\sigma_{1}} \ldots A^{\sigma_{N}}\right) S_{1}$
The final singular value, s, \quad determines normalization: $\langle\psi \mid \psi\rangle=\left|s_{1}\right|^{2}$.

Transforming to right-normalized form

Given: $\quad|\psi\rangle=|\vec{\sigma}\rangle_{N}\left(M^{\sigma_{1}} \ldots M^{\sigma_{N}}\right)$

[or with index:

$$
\left.\left|S_{1}\right\rangle=S_{1} * T \leqslant T \leqslant \quad\right]
$$

Goal : right-normalize $M^{\sigma_{N}}$ to $M^{6} \ell+1$

Strategy: take a pair of adjacent tensors, MM' , and use SVD:

$$
\begin{equation*}
M_{\alpha}^{\sigma \beta} M_{\beta}^{\sigma^{\prime} \alpha^{\prime}}=\left(M_{\alpha}{ }^{\sigma \beta} U_{\beta}^{\lambda} S_{\lambda}^{\lambda^{\prime}}\right)\left(V_{\lambda^{\prime}}^{\dagger} \sigma^{\prime} \alpha^{\prime}\right)=\tilde{M}_{\alpha}^{\sigma \lambda^{\prime}} B_{\lambda^{\prime}}^{\sigma^{\prime} \alpha^{\prime}} \tag{15}
\end{equation*}
$$

Here, $\quad V^{+} V=1 \quad$ ensures right-normalization: $\quad B B^{+}=1$.
Starting form $M^{\sigma_{N-1}} M^{\sigma_{N}}$, move leftward up to $M^{\sigma_{l}} M^{\sigma_{l+1}}$.
To right-normalize entire chain, choose / and at last site, $\quad l=1$

$$
\begin{equation*}
\tilde{M}_{1}^{\sigma_{1} \lambda}=\underbrace{u_{1}^{\prime}}_{=1} \underbrace{S_{1}^{\prime}}_{s_{1}} \underbrace{V_{1}^{+} \sigma_{1} \lambda}_{B_{1}^{\sigma_{1} \lambda}} . \quad \text { s, determines normalization. } \tag{17}
\end{equation*}
$$

Exercise

(a) Right-normalize a state with right-pointing arrows!

Hint: start at

$$
m^{\sigma_{N-1}} M^{\sigma_{N}}
$$

and note the up \leftrightarrow down changes in index placement.

(b) Left-normalize a state with left-pointing arrows!
${ }^{x} h^{\leftarrow} h^{\leftarrow} \hbar^{x}$

Hint: start at $M^{\sigma_{1}} M^{\sigma_{2}}$:

$$
M_{1}^{\sigma_{1} \alpha} M_{\alpha}^{\sigma_{2} \beta}=\left(U_{\lambda}^{1 \sigma_{1}}\right)\left(S^{\lambda \lambda} V_{\lambda^{\prime}}^{+} M_{\alpha}^{\text {both indices upstairs! }}{ }^{\sigma_{2} \beta}\right)=A_{1}^{\sigma_{1} \lambda} \tilde{M}_{\lambda}^{\sigma_{2} \beta}(21)
$$

Transforming to site-canonical form

Left-normalize sites \quad to $\ell-1$, starting from site .
Then right-normalize sites N to $\ell+1$, starting from site N.
Result:

$$
\begin{align*}
|\psi\rangle & =\underbrace{\left|\sigma_{N}\right\rangle \ldots\left|\sigma_{l+1}\right\rangle\left(B^{\sigma_{R+1}} \ldots B^{\sigma_{\mu}}\right)_{\beta}^{\prime}}_{|\beta\rangle_{R}}\left|\sigma_{l}\right\rangle \underbrace{\left|\sigma_{l-1}\right\rangle \ldots\left|\sigma_{1}\right\rangle\left(A^{6} \ldots A^{\sigma_{l-1}}\right)_{\alpha}^{\prime}}_{\mid \alpha \sigma_{L}} \bar{M}^{\alpha \sigma_{l} \beta} \\
& =|\beta\rangle_{R}\left|\sigma_{l}\right\rangle|\alpha\rangle_{L} \bar{M}^{\alpha \sigma_{l} \beta} \tag{24}
\end{align*}
$$

The states $\left.\left.\quad\left|\alpha, \sigma_{\ell}, \beta\right\rangle \equiv|\beta\rangle_{R}\left|\sigma_{R}\right\rangle\right|_{\alpha}\right\rangle_{L} \quad$ form an orthonormal set:

$$
\begin{equation*}
\left\langle\alpha^{\prime}, \sigma_{l}^{\prime}, \beta^{\prime}\left(\alpha, \sigma_{l}, \beta\right\rangle=\delta_{a}^{\alpha^{\prime}} \delta_{\sigma_{l}^{\prime}}^{\sigma_{l}^{\prime}} \delta_{\beta}^{\beta^{\prime}}\right. \tag{25}
\end{equation*}
$$

(Exercise: verify this, using $A^{\dagger} A=\mathbb{1}$ and $B B^{\dagger}=\mathbb{1}$.)
This is 'local site basis' for site ℓ. Its dimension $D_{\alpha} \cdot d \cdot D_{\beta}$ is usually $\ll d^{N}$ of full Hilbert space.

Transforming to bond-canonical form

Start from (e.g.) sc-form, use SVD for $\bar{M}=U S V^{\dagger}$, combine (1) V^{+}with neighboring B, or (2) U with neighboring A.

The states $\quad\left|\lambda, \lambda^{\prime}\right\rangle \equiv|\lambda\rangle_{R}\left|\lambda^{\prime}\right\rangle_{L} \quad$ form an orthonormal set.

$$
\begin{equation*}
\left\langle\bar{\lambda}, \bar{\lambda}^{\prime} \mid \lambda, \lambda^{\prime}\right\rangle=\delta_{\lambda} \bar{\lambda} \delta_{\lambda}^{\lambda^{\prime}} \tag{28}
\end{equation*}
$$

This is called the 'local bond basis for bond ℓ ' (from site ℓ to $\ell+1$). It has dimension r. r ($\uparrow=$ dimension of singular matrix S).

$\bar{M}=u s v^{+}$
$\tilde{A}=A U$.
$B=V^{\dagger}$
(Exercise: add indices!) (30)
$\left|\lambda, \lambda^{\prime}\right\rangle \equiv\left|\lambda^{\prime}\right\rangle_{R}|\lambda\rangle_{L}$ form 'local bond basis' for bond $l-1 \quad$ (from site $l-1$ to l).

