MPS I:. Matrix product states

1. Overlaps and normalization < {F | 1[/)

Consider overlap of 2-site MPS:

\Ci dummy:dex
16,y 6
\(S> = |6L7|€l7 A o B 1/5 ()
I R O A I T B S 8
/S \—W_rf—/_" l_——J
It u( @ g‘ﬂ 62
introduce ﬂ+'$1 A“q', B{. X
t, ¢ l———/“l‘ (6¢ { o b
reorder A ‘s « @{’F’G;d(/,)}"s"l A 6,( B ¢ @
L_d_,‘—__dj/_d"
Use diagrammatic rules to keep track of contraction patterns:
e ﬂ“p
Ket: [FD = (e3> A7 g (Y S ¢
o
ST t o
Bra: (pl = st A%y = ATE L sl (8 «
f“ “ St

We accommodated complex conjugation via Hermitian conjugation and index transposition:

—_—
ﬁ\+ y o A G‘F

This moves upstairs indices downstairs and vice versa, i.e. invents all arrows in diagram.

Note that in diagram vertex, & sits left, F right, whereas on "]T , Wﬂt'

This convention may seem irﬁ?ially awkwe?r/c]; but it greatly simplifies the structure of diagrams

representing overlaps.

Generalization to many-site MPS:
I€”>... 1591"9) Y
= |8 G
145 = 182 AL o ﬂm F‘qt LI &

T~ dummy index

dummy index

Square brackets indicate that each site has a different A matrix. We will often omit them and

o6,
use the shorthand, 4 %% F = Q[n&[‘ since the £ on % uniquely identifies the site.
dummy site .
dummy site
\/\, Ay A A ku//
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Page 1



VT e gy Hn e

XW"'I%—-*X 3 :, {a 3 Sp— -
F ' g lt‘ shorthand: x + —)rx
N

i

6
o s omit indices S %
(8)
Recipe for ket formula: as chain grows, attach new matrices on the right (in same order as
vertices in diagram); resulting in a matrix product structure.
. <(l\<gz)... L6yl
Bra: N f )
- A G PO _ ' tp §&
<'L[/ | (5\ Atla A[] F n(l’) .. Qm\ - A[“] GN/‘ e A[%] 63F ﬂ[zl s;oﬂn[|]6-(l<6|
| N §
()8
t & i\-é—l- M <X = M i‘_e_t-.é
Hfl] ﬂ[z] "[3‘.\ HYN]

We expressed all matrices via their Hermitian conjugates by transposing indices and inverting arrows.

To recover a matrix product structure, we ordered the Hermitian conjugate matrices to appear in the

opposite order as the vertices in the diagram.

Recipe for bra formula: as chain grows, attach new matrices A on the left, opposite to vertex order in diagram.

Now consider overlap between two MPS:

A A Aoy Am

X i > & —r—r——X
¥ + B " (0 Recipe: contract all
<Flyy = s |e i@. 6 pe o
LA x' A B _If J} 21 physical indices!
; ~ ) fb*\ A.t-
q[“:l A(n AY&] Rlu't
~+l ~-\- f ~ ﬁ‘ 0(61, P /46"
= A p - Adg g,'qme-z,u ms. .ﬂf'l « An /QAI?»]" Ay o)
— L -—‘

Exercise: derive this result algebraically from (7), (9),

If we would perform the matrix multiplication first, for fixed T , and then sum over - ,
we would get d” terms, each of which is a product of 2/ matrices. Exponentially costly! @

But calculation becomes tractable if we rearrange summations:
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t 6y )
o ol
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+
Rin
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{
=Cp,
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= A A Fa 64 2 M 6y
Gup' = A e A% 1A Aoy A 1)
= CE(‘[«
; — 1
" C[z] 3
(- . g
- \
- Cflﬂ\
Diagrammatic depiction: 'closing zipper' from left to right.
« B « B B
> -} 3* 7 > ‘} —S— X < > >~ X
Cf«’](\, 'TG‘ %‘t“ﬁ#‘ \6y = C[(] L+57. '\53+ F = CII]C'\‘?'* My = C[o] ¢
wet <l e ls $x el > X - yx
a g 2 p ¢ 03)
The set of two-leg tensors C[z] can be computed iteratively:
e i
Initialization: CME = /E Ceay = 1 (e
X
(identity)
)
} { -‘- )
. . _ 'x _ Ar 'l f
Iteration step: C[’]E = Cfl"] 6; C“] 4 = ,C& ']1 ’\
' \ {
A Us)
Final : ~ !
inal answer (Elg > = CE»J' "
Cost estimate (if all A's are Dy D):
A
One iteration: Dd-D 3 ,Dz of.D g’
fired  suen fw»( S @’: = = E ()
N:ZG‘ 7: aﬂ Z( '1. !
Total cost: ~ D”,,(. N
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Remark: a similar iteration scheme can be used to 'close zipper from right to left':

Y-~

¥

N . -
b 4

| AN .
! = I“ ] 3 . = . D)
i <t ¢ ) By = & J | ,6""1}1)[.\-(] - 3-0[(] ‘

! { 1 1> 3
Initialization: 3 D[ ”m = '} , Iteration step: j -D[z] = 'l:_fz_’z D[Z “1
: T

\
(identity) (29

Y eo\ \V
v

Normalization < | U )

»
D

Use above scheme, with [}

Left-normalization

A 3-leg tensor 4 “cfs is called 'left-normalized' if it satisfies

t xplicitly: 1 I T o6 _ ' U
A'A = 4| Eely (FA) A0 1 W

Graphical notation for left-normalization: draw 'left-pointing diagonals' at vertices

_,
S BERE o
3 o
A 'u(AJ{sMy

When all A's are left-normalized, closing the zipper left-to-right is easy, since all C_ (e}

reduce to identity matrices:

! ! o A 'A \L )\
aw-{ . G (B wf) - wdde
* ~ Fy 1\ 1/ A
Hence: (29
S>> ST ¥ —-x x
<’LH1,—7 - "r:j—’\'x ) 4F:ﬁL_x - @L—x - {x = @ @)

When all matrices of a MPS are left-normalized, the matrices for site 1 to any site { =l.., N
define an orthonormal state space:

ﬂr‘\"\ﬁv‘lj

XTW v

ATTIT. -f, a0
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:lj,l i {/\ <}l|7‘7 _ 17\'2 @
by A

close the zipper

LY
| \}'}7
< V2 Vi 2
< <
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Right-normalization

So far we have viewed an MPS as being built up from left to right, hence used right-pointing arrows

on ket diagram. Sometimes it is useful to build it up from right to left, running left-pointing arrows.

Building blocks:

o
3 6, X Ls)
(o> = [GN>:B°( Io_u
ol
= | [ S 6y ¥ p 6yl p X (26
1g> = leley, LP)F, B, T;‘
(; 641 v
left-to-right index order as in diagram
£ !
<°(\ = B lGN < 6» \ & X (157}
L————rﬁ"‘-__
= B 60‘
o 6
ot g 1<6,) * igu )
Gl = B Bag, <ul<Cn f
3
Iterating this, we obtain kets and bras of the form
A e o
% x
Iy = Isnjls,\,.),-.lme'l,__1396"-?‘ By N X }\ (@9)
— 6\ o S
-1
' £ é fp-l 6y
+
<£H = '6”“ &0(6-”-\Ig o gﬁfu‘ <6il... <6IJ-I ‘465\), "‘L'"'é*_b“i" Go>
L — A o

6«

A three-leg terror is called right-normalized if it satisfies

5p
Bgfz 1 Explicitly: (1515)[)‘5ﬁ - 3 ° s - j]_ﬁ‘sl (31)

F o6

Graphical notation for right-normalization: draw 'right-pointing diagonals' at vertices
3

S o T
’ —)L F'_)J F'
g¥
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When all B's are right-normalized, closing the zipper right-to-left is easy:

gy = !

7V Xy ¥ x
( - } - i B\ N }: ( 63)
% x x \ X %

When all matrices of a MPS are right-normalized, the matrices for site N to any site { = t.., N

define an orthonormal state space:
A 2 8 3 B = ,
L N

6

\ﬁ> — lgz)[BlBiu.l” Bﬁxl]}/

! , '
b _ } Qg = .ﬂ.;\;\ @

7} A

close the zipper

Conclusion: MPS built purely from left-normalized ﬂ 's or purely from right-normalized B's

are automatically normalized to 1. Shorter MPSs built on subchains automatically define orthonormal

state spaces. @
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2. Various canonical MPS forms

MPS-1.2

Any matrix product can be expressed through different matrices without changing the product

! - | ~ w/
MM = (M M)[M M ) = MM 'gauge freedom'
= =7
M M
Gauge freedom can be exploited to 'reshape' MPSs into particularly convenient, 'canonical' forms

Left-canonical (Ic-) MPS:

(y> = \#)M(F] .. A%)

S~
ﬂ+ﬂ = l { )r = E ®
S~

Y ——c < < X
Right-canonical (rc-) MPS: * T‘ ¥ {
| 6-”
- s 6 + ]
W - 5,7 8% ed o1 T)-T} e
N !
®E
Site-canonical (sc-) MPS: v Mm - Mu‘.\F
e o % o (%)
l“)L \P?g (3
- e 6 6-2' 2 TN 6v { MO{S'Q§
ly> = 167“ (A% ... M[e]B v B%) = Bor L6212
S $%f
Bond-canonical (bc-) (or mixed) MPS: XTWTTK = oc—->-—v—¢-f$
S Sue N
|0‘7L I82¢
=N 6
> =180 A% Spf(ef D (5 = s tle)
oK
t\cm&WWd
How can we bring an arbitrary MPS into one of these forms?
Transforming to left-normalized form
M Mm M MM 6
H . . > 6! FN * 7 —> N > X
Given: (4D = Is‘)N(M oMty 4 J 4 +
G‘ G
[or with index:

|$) = PrreTr-S]

o M7 "TYTTEC

. 6!
Goal : left-normalize M
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X X A
Goal : left-normalize M o Mflw( j 7 j 7 l E I , (6)

!
Strategy: take a pair of adjacent tensors, MM, and use SVD,

MM = us\/"M’s AFI, with A=W, o = sutu ™

a [/
n /“"'Tﬁ ~
M M syp, W S V. M 2 gAm !
&« 4T+—r— o = S>> =& QT‘)T o 3
A A
p ‘ 32 (:}0_,
- 6 G ¢ ¢!
< & 2 o5\ 4 ge' ) _ a6 e “
u* nt e = (i A\(é = LR, W
Th | (,((_UL =1 left lization: fq =
e properly < ensures left-normalization: ,C) 61 = 1 (to)
SA
Truncation, if desired, can be performed by discarding some of 100 F
The smallest singular values, 102
T i‘ Toeer
Z — (but (10) remains valid!) _
ﬂ -1 ﬂ i 10—6 15 K\, MSM
1073
Note: instead of SVD, we could also me QR (cheaper!) b A
T e

By iterating, starting from /1 € 24 ®T  we left-normalize Mm% 1o Mo-‘“

MMMMM A A M M M
S S K = X X
T T

To left-normalize the entire MPS, choose /e = I\/ .

~,

As last step, left-normalize last site using SVD on final M

~ + Aﬁﬂs
,"jfﬁ/ 16 i fi M _ nw s v _ ‘ ;
A - sV 0 R S SRR Y O S
[\ ) M)

H:lw‘ S, | 6, )

diamond indicates
6 ) single number
Sl

lc-form: ('L() = l?)ﬁl(ﬂ@..
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[c-form: [ 'LF > - la’-)ﬂ (ﬂG '_ B fl G"') Sl single number

T
The final singular value, s,  determines normalization: <]'(’(ZD ={s,[ . Gy

Transforming to right-normalized form

Given: (¥ = ‘?)M(M(;c Mm\

[or with index: | 5,) = S<rér47ér> ]

6, 6,
Goal : right-normalize ¥ Y to M L+ xW—T-x

§, 6@ Gy
!
Strategy: take a pair of adjacent tensors, /1 /7 , and use SVD:
mm' = MUSY .B with M‘ Us  B=y" . (3
M M . SVD M U é \1 ey " B (
ol -éq\_{_{\—é_ o - j-—-e-o < < A o (/(,\
¢ e e
o 6" s ¢ '
- P I t ¢ ~ g7 6
A % sA)(\/ ") s AR,
Here V+ \( = ensures right-normalization: E B-j~ =
, s 1 g : = 1. (16)
6 [} 0
Starting form ] Y oy Y , move leftward up to M £ ,47("".
To right-normalize entire chain, choose / and at last site, [ = |
~ G I t
M | A = (/[ 5 \/ 6 . S determines normalization. ()
W—/ W l———y—/
=\t s( B G-A
{
Exercise
(a) Right-normalize a state with right-pointing arrows! * 1’ + 2 * ? T *
Hint: start at ALYl

and note the up &= down changes in index placement.

MM svD, M

1
U s v m b

-
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« eﬂ;T x - ——»—O—T -‘-1——<—1~ (3]

‘[\ both indices upstairs!

xe ("> o' ( ~e p t § X6 A 6
M rs ’/] I = M (:' M A S )(\I ,(\, ) = M E 2 ((‘1)
(b) Left-normalize a state with left-pointing arrows! xmx
Hint: startat ¢y
MM WS e AW -
X = +—>— s/‘ —L— ﬁ = X Zo)
} 7 A ¢ } 2 oA 4\ Q} ? ‘
Gy Co 6o 6, 6. 62
[ both indices upstairs! )
6 X 6 _ 1§, )( }'X + § 62 > 2% N G,
M, Ma& F = (l/( ) 3 V'X M“ P = H‘ M/}‘ ¥ (21)
Transforming to site-canonical form
~r C/_
M m A Ay m o m Mo p

TTT‘TTTTT‘TTTTT“TT*W

( “>L “ \F>K

Left-normalize sites | to £-t , starting from site (@2)
Then right-normalize sites & to L+ , starting from site A/ .
Result:
6, 3 - o6
14> = 1615, (B4 B "){:' le L6y \6> (A A ') M %f
AP o, (29
M A6,
= \{5>K\6E7\°‘7L M ef (z4)
The states So( ) % [S> = ‘ rS >@‘ 62) ‘a( >L form an orthonormal set:
a6y g
I /
%, P \“,Jt,ﬁ> RN’ 53 g (20

(Exercise: verify this, using A {n =1 and 3 6+= 1)
N
This is 'local site basis' for site - . Its dimension 'Dd- d- D{g isusually <<< A of full Hilbert space.

Transforming to bond-canonical form
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Transforming to bond-canonical form

= t +
Start from (e.g.) sc-form, use SVD for M = l,( S V , combine © V with neighboring &,
or D 1A with neighboring A

(DAAAS&B

wm TREET A iyt w

mvolves involves
sites /41 to N sites | to

Pi = XS \J+ A=y 3R = V+B (Exercise: add indices!) (@

The states | b\ ) VY = 1 7\ 7&‘ 1! '7L form an orthonormal set.

- - - {
! "N = 1 A 29)
aaixnany= 9%y (
This is called the 'local bond basis for bond £ ' (from site L to et ). It has dimension .4

( + = dimension of singular matrix 5 ).

&@ﬁ 5353

A A M B 1’
TY T o= st e
o

involves
|nvoIves
sites £ toN stes | to -1

M = AS \)+ A= AU , &= \}1. (Exercise: add indices!) (37)

I')(I VY = \ ’A‘?K[ 1 7L form 'local bond basis' for bond £ -\  (from site -1 to ¢ ).
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