Tensor Network Basics II

TNB-II.1

1. Entanglement Entropy and Area Laws

Consider quantum system in state l'lf§ , with density matrix fa\ = \\?5 < ’qfl £

Divide system into two parts, A andB. Suppose A has linear dimension <Z . 'I

To obtain reduced density matrix of 4 (or& ), trace out & (or A ):

'reduced density matrix' for # fg = T A and = TIr I’; 3
4 3 z #
'Entanglement entropy' of Aand 3 : ,SYA/g = —Tr ﬁ% Zmz jBA = — Z é\ tix ®)
*

eigenvalues of Fd
It turns out: for Hamiltonians with only local interactions, ,5v A /8 is governed by an 'area law":

LS’, = 5}4/3 ~ (areaof boundaryof 4 ) = 24

@)
2 ) &
—~ ,C in 3D for gapped system (3a)
~ ,f in 2D for gapped system O £ (zb)
~ Cont. in 1D for gapped system | ——N (a¢)
~ f. &+ /&« N in 1D for gapless system (30(
Now consider an MPS of maximal bond dimension ;‘ ' A B | C D
G L33 ! ! ! i
> ~ Iepleeiels) A8 54" L1, of  [a ]l X 5]
B — o1 a2 o3 04
unit tensor = SM L
')F @
divide systems into two parts: Left: 2 sites, Right: 2 sites
system system 1/’\]
A B T C D
-— L e e S SR DR PP S
A 6. s 61 _ %6 I a 2 A 8 *
> = 17 lepoley C° F:DF “eleel6) A Wb 5 t,] 152 fgg -
\—-—————Y’—_—_) - o v ~—
. 122, 129, A%
D -
= = entangled superposition of two state spaces, (s)
® I\
/)‘a - L each having dimension of at most D
D -
= Z )> ® 2 > (After the sum over | has been performed explicitly using the #

Kronecker delta, the result contains non-covariantly paired indices.)
suppress @henceforth
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vensiy matrix: o = ¥yl = Z 1000, gz

Reduced density matrix: F)A = 1}3 ﬁ, = ; ’glbﬂ %: ‘X)RU\Z S’)_w&(?\‘l‘/u},z
complete set of stat(e\s)for 3
/
i aZ?\ 0. (Y 44

with matrix elements

(= 302 0 = T @l D, = A1,

(8)

(4

(1o

(W

This matrix has rank £ D (say =D ) (rank = maximum number of linearly independent rows or column)

Let TJ, be its eigenvalues, with o = Lo, D

and normalization = AR
= Tr gy = 2o
@ 2
Entanglement entropy: ,45' = - 2 tJu v Wy
=1
1 D
Maximal if ZJ, = D forall o¢ : £ - Z ]‘5 /&42 ~(5 = /&‘zD
X =

1D gapped: D (if) Z Coma (independent of system size!) @
1D critical: (i:‘) 9 Lt thall ™~ Poreer Low iu N @
2D gapped: (,3\’,") Z’{ @
3D gapped: (3,9 2'(2 @

Important conclusion: MPS can encode ground state efficiently

for gapped and gapless systems in 1D, but not in 2D or 3D!

(12)

(3)
(4)

(5a)
(15b)
(15c)
(15d)



2. Tensor network diagrams [Orus 2014, Sec. 4.1]

TNB-II.2

'tensor' = multi-dimensional array of humbers
'rank of tensor' = number of indices = # of legs
rank-0: scalar 8

rank-1: vector [—l s

-

rank-2: matrix HGM ol H*o‘ p ”
-

rank-3: tensor H‘{Gg o F H*fsa{ & <t &

f gy -

Index contraction: summation over repeated index

ﬁ”l o Y 2} 3 5
graphical representation of matrix product

ZF A ’A x‘ = F]D(F%‘S} ) 4 B

DF = 'bond dimension' of index F
(depends on context, can be different for each index; is often/usually not written explicitly)
'open index' = non-contracted index  (here &¢ , F )

'tensor network = set of tensors with some or all indices contracted according to some pattern

Examples:
c = A B° © _ 4 %
¥
scalar vector + dual vector
- s Y o m D
-D(S = A T B /A C F - 5 =
L $ Yot M
E= Dy = A X B /AC o E
Trace of matrix product: A B
S o ¥ -
T = nuﬁfgcﬂn% £ = A
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Cost of computing contractions

Result of contraction does not depend on order in which indices are summed, but numerical cost does !

o 5 C A
Example 1: cost of matrix multiplication is  (?(D ) - =
o = o =

For every fixed ¢ and (D X D combinations), sum over Dg values of
Xy

Cost = D - :DT . @ﬁ (simplifies to @3 if all bond dimensions are = D)
Example 2: 4 Lj}, | & i A Z'&O} ZMwms
“~N by § 3
O(D*- D) O(D?. D?) E
tracti tracti
contra |ng//\ o 5 contracting }! o 3

b P
A Y‘(EY\(‘/AC/AFS) = F}SY (BC)X‘FS *

E g

\

3ﬂ£§5 | Sam z,(%g 2 Suws
v Nk v AC “ Y
= . O(D? - D) o O(D?*. D?) E
o t 5 contracting % ol 5 contracting X\ * o /\ 5
Yot ) Yo M oL
5 /"‘(H ‘(C/{F‘S) = 5 /A(HC\ "‘*F = E 3

independent of o{ !!
S y
First contraction scheme has total cost (7( D } , second has 0( D ) 1

Finding optimal contraction order is difficult problem! In practice: rely on experience, trial and error...

In first two-thirds of course, we will focus on 1D tensor networks. 2D will come after that.
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3. Singular value decomposition (SVD)

[Schollwoeck2011, Sec. 4]

Any matrix M of dimension [) y D‘ can be written as

D."
D= D D

M

D!
D= D D

Properties of S

+ square matrix, of dimension ”DMM x Dm:m

« diagonal, with non-negative diagonal elements, called 'singular values' S« = s oco¢

M=L{S\)Jr

D

D.’

TNB-II.3

g

D.f

vt

D.’

D
D

U

D."
D

« 'Schmidt rank' T~ : number of non-zero singular values

« arrange in descending order:

Properties of U :

» matrix of dimension \D) X "D A

 columns are orthonormal:
K =1 @®
uut+1

) 1
Properties of V :

§
« matrix of dimension D, .. x D

 rows are orthonormal:
viv =1L w
V- o
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Si2 S22 ..

D < D'
DM?K:—D

B> s
’DV‘\.W\-.- D‘

sy S.‘- ’ ‘0__/__:;;!‘2)) “)
’DM.“~{‘ zeros
Ut U
Ut 1§
vt 174
vt v

2 S¢> 0
= S = o(:«j(s', Se,

V)

,with  Decw = ‘M;“(D/D’ )




(1), (3), (4) imply:

0) ¢ + ® ®
MMb 2 wsyTusa 2 usd S
) ( (@
w = ysutusyt T ovetyt Y

+

1L+M M+u = SL )
+
Vv HJ'M V = s ‘ ()

So, columns of u are eigenvectors of M M , and columns of \/ are eigenvectors of M M.

Truncation

SVD yields optimal approximation of rank T matrix M by a rank 1! (4'1‘) matrix MI :

1 2
(optimal w.r.t. the Frobenius norm: “ “ “F = Z I les! )
o~
; B
Suppose M= ASV 3) <
i
. ()
with S = o(;aj(s., ... Sp 0,0 0) "
— 1072
- D uniom A zeros 10— |
{ 1
Truncate: M = IASV () 107°%
\
. ' 10-% |
with S" = diag (50 50 ... -, 0,..0) (0) ) T
3 ! 4 1 97 PN ) N ?,.-' r
Dk«iw‘ T zeros
Retain only 1 largest singular values! Visualization, with T = D, :
D D D r oy
D< D DI M = D
D o ' D' I D
/ = = —
bl M - %? W) (et - m
D D’ D D
D= Iy DM = )
D! ,I.-" '.f" D.!' 'T"' ?’" D."
- —
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QR-decomposition

D<D
If singular values are not needed,
aDyD' matrix M
has the 'full QR decomposition'
B3 s
M = &K ()
with 2 a D¥D unitary matrix,

(
and R a DxD upper triangular matrix,
If D = D', then M has the 'thin QR decomposition'

1= (6,0:) %) = Q1R w

0

{ |
with dim(Q1) = DD’ , dimRy)=Dxd

K,x‘s“o if 0(>F
T [&y
Q1] Q2
LU Lo

&f &( = JL but

and R1 upper triangular.

+
& #4 W

|
Q1
I

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').
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