Tensor Network Basics 11 TNB-II.1
1. Entanglement Entropy and Area Laws (introductory comments)
Consider quantum system in state (Y 9, with density matrix (3 = M\' <\ é—>$

(A

Divide system into two parts, A andB. Suppose A has linear dimension <Z .

To obtain reduced density matrix of 4 (or&), trace out B (or A ):

'reduced density matrix' for # : f‘)ﬁ = T.,:B [3 and f;g = T;-A'l; m

'Entanglement entropy' oannd$: 'SVA/g = - T,'TA [';A' ,sz/}# = - z'zJ ’l’Jz”a )

elgenvalues of Fﬂ
It turns out: for Hamiltonians with only local interactions, ;Sv A /3 is governed by an 'area law":

,5' = ;Sy,,q/g -~ (area of boundary of A ) = 24 &)
~ 4 ‘ in 3D for gapped system (3a)
—~ ,{ in 2D for gapped system D (3b)
~  (oust, in 1D for gapped system | ——N £Y9)
~ coust. + LA N in1Dfor gapless system (3d)

Now consider an MPS of maximal bond dimension D: A B C D

¥ = 16 laeleelk) ATE 3 1”1;18(}& SRR ENER
as a

unit tensor = 8” j\ C63§

f inserting 1- 4 )

divide systems into two parts: Left: 2 sites, Right: 2 sites effectively
———— ————— )
system A system 3 inverts arrow
A B I'vC D
— }a 63- S 61 1Y% * Q Y 5\ ﬂ
> = 1% 1e3mle) (5 DF 0 el ATE S 1, 1o My T,

- -
- —

i, 2%, 13y, 13

D -
= z :ﬂ_n |A > ® |2 > = entangled superposition of two state spaces, (s)
M=t ® L each having dimension of at most D

1]
Mo

| ﬂ > ® | 'A > (After the sum overA has been performed explicitly using the (}\
R~ L Kronecker delta, the result contains non-covariantly paired indices.)

suppress & henceforth
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Density matrix: ﬁ = 1%yl = %'lﬂleL Sl'lg(’)il (8)

Reduced density matrix: F)A = -]:r (/1[ 2 \17 \)Q <’)_| (’M/“) (9
complete set of states for 3
’)‘ |

= %\' \3}_1.: (P"'X A’ ﬁ—}\—\ (1o

with matrix elements
)‘ _ I _ [} _ [}
(pa)'s = % M . é@lmg CulAd, = OAD, 0
13

This matrix hasrank € D (say = D ) (rank = maximum number of linearly independent rows or column)

Let Ly beits eigenvalues, with of = 1, ..., D

and normalization | = Tr ng > 2y, (12)
ot
@ 2
Entanglement entropy: ;5' = Z r.J“ /LT Wy
=1
D
Maximal if ), = % forall o : < - 2> B /ng‘%; Aj" D (@)
oK =1
= 25’ < D ()
B comst
1D gapped: D~ 2 (independent of Tystem sizel) @ (lSa)
(34) ~ w i
1D critical: ~ 2 st + L N pover o iu N @ (155)
(3\,)
2D gapped: ‘Z @ (1sc)
) z
3D gapped: 6 2[ @ (15d)

Important conclusion: MPS can encode ground state efficiently

for gapped and gapless systems in 1D, but not in 2D or 3D!
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2. Tensor network diagrams [Orus 2014, Sec. 4.1]

TNB-II.2
'tensor' = multi-dimensional array of humbers
'rank of tensor' = number of indices = # of legs
rank-0: scalar A . ﬂ+ .
rank-1: vector A° ﬁ]fo_ 6
Yo
rank-2: matrix A ¢ o ’r—?- o H* o s t::-— o
[
&
rank-3: tensor HNGP o -9—1_)-(3 H’l'ls xs <—i—e~ 3
6
Index contraction: summation over repeated index
De
o > of « ¢ C A B
= A of, = A 4. - 4 %
C X F,z‘:\ P v (56 K\ e} 9 T a B i ~

graphical representation of matrix product
DF = 'bond dimension' of index F

(depends on context, can be different for each index; is often/usually not written explicitly)
'open index' = non-contracted index  (here ¢ , Y’ )

'tensor network' = set of tensors with some or all indices contracted according to some pattern

Examples:
C A B
C = ﬂ)“ BO( . = %
scalar vector » dual vector
) ¥ o mé D
D% = _
§
E= D% = ﬁ)éy‘B\“{/aCﬂ« B
Trace of matrix product: A B
Mo |
T = ﬁguﬁupcﬁfDrg i: I B8
l—‘—ﬂ
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Cost of computing contractions

Result of contraction does not depend on order in which indices are summed, but numerical cost does !

C
Example 1: cost of matrix multiplication is @ (D3> . = é—f
= ~ = ~

For every fixed o and Y  (Dyx D‘ combinations), sum over ‘DF values of F

Cost = -Du : Df . Drs (simplifies to :I)3 if all bond dimensions are = D)
Example 2: 4 L""’gs ! s 4 2 legs , 2 simns
TAs S A N WS
O(D*- D) O(D?. D?) E
B C BC —
N H 3 contracting J N 3 contracting X‘S o /\ 5
§ Yo _ S Yo _ o
A \»(15 %Cﬂps) = A Y(BC) BS B
A 3le {
is ; | Sum 2 (35 , 2 Shuag
v “~ & v AC v
= . O(D? - D) o O(D?*. D?) E
o H 3 contracting & ol H 5 contracting X‘ /M o /\ 3
Yo § o M o

independent of & !l

s
First contraction scheme has total cost (7(]) } , second has 0( D*) I

Finding optimal contraction order is difficult problem! In practice: rely on experience, trial and error...

In first two-thirds of course, we will focus on 1D tensor networks. 2D will come after that.
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3. Singular value decomposition (SVD) [Schollwoeck2011, Sec. 4]

TNB-II.3

,i..
Any matrix M of dimension [) v D' can be written as M= USV

B D D D’

M = I 5 ¥t

D D' D' D

Properties of S
« square matrix, of dimension =~ Dy x Dm;,\ ,with D = m:u(’bl'b‘)
« diagonal, with non-negative diagonal elements, called 'singular values' S o = Sw

+ 'Schmidt rank' 1" : number of non-zero singular values

+ arrange in descending order: Si2%.2 .2 Sr>0

= S = o(c‘aj(S«, Sz, ..., $+7,0, “,/o)

——
Dugie = T zeros

Properties of U : Ut U
« matrix of dimension D x Dy D< D —— { H H =
Dwmin =D
e columns are orthonormal:
+ Ut /55
Wi-1 ® D> D" =
ot UU # 1 Duin = D
(not unitary)
properties of /'
roperties o : vt v
o matrix of dimension Dy x D' D<D- — -
» rows are orthonormal:
V+V =1 ()
vt v
T
(not unitary) =
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(1), (3), (4) imply:

0 + 1 ®

MMT 2 usyivsa E ousd S wmtu - us 6
(0 ® f W

w2 vsatusyt Y ovetyt Y v - ve )

So, columns of (,( are eigenvectors of M MT’ , and columns of \/ are eigenvectors of M+M .

Truncation
/
SVD yields optimal approximation of rank T matrix M by a rank Tt (4'1‘) matrix M

(optimal w.r.t. the Frobenius norm: || “ \\; = 2 ( MK(J?’ )

T f
Suppose M= (A SV @)
with S = o(l'aj(ﬁl, Sz'.........lSr' o)...,o) (al
"
D, -1 zeros
{ it
Truncate: M = IASV )
. {
with S = o(:aj(Su, St 551 0,... 0,0 0) () " r
D, n~+' zeros
Retain only 1°¢ largest singular values! Visualization, with 7 = D, ;
D D D D’
D< D' D| M = D
D o ' D' I D
o F - o[[[o] I, - = B m —
D' D D D
D>p D |M = D
I r! ! Iy A I
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QR-decomposition

D<D: D = D 0
If singular values are not needed,
aDyD' matrix M M - Q R
/ !
has the 'full QR decomposition' L D 2
D= D' D = D :
M = QR (n) | L
. . . t 4
with 2 a Dx D unitary matrix, QR = aa=1

and R a DxD' upper triangular matrix, K,XP =0 if o >P

If D = D', then M has the 'thin QR decomposition'

T (=] [
i o] ~ 1

e

M= (&';&2)'(2‘) = &R () ‘
0

{ {
with dim(Q1) = DxD , dimR1)= D¢D , &f R = I but & gzt' 41 W
and R1 upper triangular.

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').
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