
Divide system into two parts,      and    . Suppose        has linear dimension      .

'reduced density matrix' for     :

Consider quantum system in state           , with density matrix 

and 

'Entanglement entropy' of     and     :

eigenvalues of

It turns out: for Hamiltonians with only local interactions,             is governed by an 'area law':

(area of boundary of        )

in 3D for gapped system

in 2D for gapped system

in 1D for gapped system

in 1D for gapless system

Now consider an MPS of maximal bond dimension D:

(After the sum over     has been performed explicitly using the 

Kronecker  delta, the result contains non-covariantly paired indices.)

suppress     henceforth

TNB-II.1

To obtain reduced density matrix of      (or    ), trace out     (or      ):

divide systems into two parts: Left: 2 sites, Right: 2 sites

system          system 

= entangled superposition of two state spaces, 

   each having dimension of at most D 

unit tensor  

1. Entanglement Entropy and Area Laws (introductory comments)

inserting     .  

effectively 
inverts arrow

Tensor Network Basics II
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Density matrix:

Reduced density matrix:

complete set of states for 

with matrix elements

This matrix has rank              (say           ) (rank = maximum number of linearly independent rows or column)

Let              be its eigenvalues, with 

Entanglement entropy:

Maximal if for all        :

and normalization

1D gapped: 

1D critical:

2D gapped:

3D gapped:

Important conclusion: MPS can encode ground state  efficiently 

for gapped and gapless systems in 1D, but not in 2D or 3D!

(independent of system size!)
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[Orus 2014, Sec. 4.1]
TNB-II.2

'tensor' = multi-dimensional array of numbers 

'rank of tensor' = number of indices = # of legs 

rank-0:   scalar

rank-1:   vector

rank-2:   matrix

rank-3:   tensor

Index contraction: summation over repeated index

= 'bond dimension' of index 

graphical representation of matrix product

(depends on context, can be different for each index; is often/usually not written explicitly)

'open index' = non-contracted index     (here      ,       )

'tensor network'  = set of tensors with some or all indices contracted according to some pattern

Examples:

scalar vector    dual vector

Trace of matrix product:

2. Tensor network diagrams
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Cost of computing contractions

Result of contraction does not depend on order in which indices are summed, but numerical cost does !

Example 1: cost of matrix multiplication is

Cost = 

For every fixed        and           (                 combinations), sum over          values of 

(simplifies to           if all bond dimensions are =     )

Example 2:

contracting 

independent of      !!

Finding optimal contraction order is difficult problem! In practice: rely on experience, trial and error…

In first two-thirds of course, we will focus on 1D tensor networks. 2D will come after that.

First contraction scheme has total cost                    ,  second has                      !!

contracting contracting 

contracting contracting 
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Any matrix          of dimension                can be written as 

Properties of S

square matrix, of dimension                                  , with •

diagonal, with non-negative diagonal elements, called 'singular values'•

'Schmidt rank'       : number of non-zero singular values•

arrange in descending order:•

zeros

Properties of     :    

matrix of dimension•

columns are orthonormal:•

Properties of      :       

matrix of dimension•

rows are orthonormal:•

TNB-II.3[Schollwoeck2011, Sec. 4]

but

but

(not unitary)

(not unitary)

3. Singular value decomposition (SVD)
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(1), (3), (4) imply:

So, columns of          are eigenvectors of             ,    and columns of         are eigenvectors of   

Truncation

SVD yields optimal approximation of rank       matrix         by a rank                    matrix          : 

(optimal w.r.t. the Frobenius norm:                                                  )     

Suppose

with

zeros

Truncate: 

with

zeros

Visualization, with                     :Retain only      largest singular values!

   Page 6    



QR-decomposition

If singular values are not needed, 

a                 matrix          

has the 'full QR decomposition'

If D ≥ D', then M has the 'thin QR decomposition'

and           a                  upper triangular matrix, if

with          a                  unitary matrix,      

                                   but                     

QR-decomposition is numerically cheaper than SVD, but has less information (not 'rank-revealing').

with dim(Q1) =               ,     dim(R1) =               ,   

and R1 upper triangular.
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