TNB-I.1

Tensor Network Basics (TNB-I)

1. Why study tensor networks? (Intro)

Because tensor networks provide a flexible description of quantum states.

Example: spin- <u>s</u> chain, with <u>N</u> sites

	a L N	
Local state space of site 🤾 :	$ \varsigma_{l}\rangle_{l} \in \{ 1\rangle_{l}, 2\rangle_{l}, \dots 2st1\rangle_{l}\}$	(I)
Local state label:	6 = 1, 2,, 25+1	(2)
Local dimension:	d = zsti	(3)
Shorthand:	$ \sigma_l\rangle \equiv \sigma_l\rangle_l$	(4)
Index 🚶 on state label 🝕 suffi	ces to identify the site Hilbert space $\left \right\rangle_{0}$	

Generic basis state for full chain of length N (convention: add state spaces for new sites from the left):

 $| \boldsymbol{\sigma}_{N} \rangle \otimes \dots \otimes | \boldsymbol{\sigma}_{k} \rangle \otimes \dots | \boldsymbol{\sigma}_{k} \rangle \otimes | \boldsymbol{\sigma}_{k} \rangle \equiv | \boldsymbol{\sigma}_{k} \langle \boldsymbol{\sigma}_{k} \rangle = | \boldsymbol{\sigma}_{k} \rangle \otimes | \boldsymbol{\sigma}_{k} \rangle = | \boldsymbol{\sigma}_{k} \langle \boldsymbol{\sigma}_{k} \rangle = | \boldsymbol{\sigma}_{k} \langle \boldsymbol{\sigma}_{k} \rangle \otimes | \boldsymbol{\sigma}_{k}$ 14^N = span {10 } Hilbert space for full chain: (6) $|\psi\rangle_{N} = \sum_{\substack{\sigma_{1}, \dots, \sigma_{N} \\ \neg & \neg}} \sum_{\substack{\sigma_{1}, \dots, \sigma}} \sum_{\substack{\sigma_{1}, \dots,$ General quantum state: (7) $(\in \mathcal{W}^{\mathsf{N}})$ repeated indices implied arbitrary linear superpositions Dimension of full Hilbert space $\overset{N}{\not\sim}$ $\overset{N}{\sim}$ (# of different configurations of $\overset{\sigma}{\varsigma}$) Specifying $\langle \psi \rangle_{\mathcal{M}}$ involves specifying $C^{\vec{\sigma}}$, i.e. $d^{\vec{N}}$ different complex numbers. $C^{\vec{\sigma}} = C^{(\alpha_1, \dots, \beta_N)}$ is a tensor of rank N (rank = number of legs) ح و ≥ Graphical representation: (8) $\sigma_1 \sim \frac{C}{\sigma_0}$ one leg for each index

Claim: such a rank L tensor can be represented in many different ways:

MPS: matrix product state

PEPS: projected entangled-pair state

arbitrary tensor network

- a link between two sites represents entanglement between them
- different representations \Rightarrow different entanglement book-keeping
- tensor network = entanglement representation of a quantum state

2. Iterative Diagonalization

TNB-I.2

Continue similarly until having added site N. Eigenstates of H^{N} in H^{V} have following structure:

Nomenclature:

for a physical indices,
 indices,

$$\propto$$
 , β , γ = (virtual) bond indices

Alternative, widely-used notation: 'reshape' the coefficient tensors as

$$\widetilde{A}_{\alpha}^{\sigma_{1}} = A^{\sigma_{1}}_{\alpha}, \quad \widetilde{B}_{\alpha\beta}^{\sigma_{2}} = B^{\alpha}_{\beta}, \quad \widetilde{C}_{\beta\gamma}^{\sigma_{3}} = C^{\beta\sigma_{3}}_{\gamma}$$

to highlight 'matrix product' structure in noncovariant notation:

$$| \delta \rangle = | \epsilon_1 \rangle \otimes \dots \otimes | \epsilon_3 \rangle \otimes | \epsilon_2 \rangle \otimes | \epsilon_i \rangle \widetilde{A}_{\alpha}^{\epsilon_1} \widetilde{B}_{\alpha\beta}^{\epsilon_2} \widetilde{C}_{\beta\tau}^{\epsilon_3} \dots \widetilde{D}_{\mu\delta}^{\epsilon_N}$$

Comments

1. Iterative diagonalization of ID chain generates eigenstates whose wave functions are tensors that are expressed as matrix products.

Such states an called 'matrix product states' (MPS)

Matrix size grows exponentially:

Numerical costs explode with increasing N, so truncation schemes will be needed...

Truncation can be done in controlled way using tensor network methods!

 $\propto \beta \gamma = \frac{1}{2}$ for all virtual bonds Standard truncation scheme: use

2. Number of parameters available to encode state:

 $\mathcal{N}_{MPS} \stackrel{\leq}{\underset{\text{vould be '=' if all virtual bonds have the same dimension, D}}{\mathcal{N} \cdot \mathcal{D}^2 \cdot d}$

AMEA~D

 \mathcal{N}_{MPS} scales linearly with system size, \mathcal{N}

If L is large: $M_{MPS} \ll d^N$

Why should this have any chance of working? Remarkable fact: for 1d Hamiltonians with local interactions and a gapped spectrum, ground state can be accurately represented by MPS!

Why? 'Area laws'! See section 4.

3. Covariant index notation

For exposition of covariant index notation, see chapters L2 & L10 of "Mathematics for Physicists", Altland & von Delft, <u>www.cambridge.org/altland-vondelft</u> Index and arrow conventions below, adopted throughout this course, are really useful, though not (yet) standard.

TNB-I.3

Kets (Hilbert space vectors)
For kets, indices sit downstairs. E.g. basis kets:
For components of kets (w.r.t. a basis), indices sit upstairs:

$$| \phi_{\sigma} \rangle = | \phi_{\sigma} \rangle A^{\sigma}$$
 (i)
Repeated indices (always up-down pairs) are summed over, summation \sum_{σ} is implied.
Linear combinations of kets:
 $| (\phi_{\alpha} \rangle = | \phi_{\sigma} \rangle A^{\sigma}_{\alpha}$ (v)
Note: for A^{σ}_{α} the index σ identifies components of kets, hence sits upstairs
the index α identifies basis kets (vectors), hence sits downstairs
Basis for direct product space:
 $| \phi_{\overline{\sigma}} \rangle = | \phi_{\overline{\sigma}} e_{\overline{e}_{\alpha} - \sigma_{\alpha}} \rangle = | \phi_{\sigma_{\alpha}} \rangle_{\infty} ... \otimes | \phi_{\sigma_{\alpha}} \rangle_{\infty} | \phi_{\sigma_{\alpha}} \rangle_{\infty}$ (a)
Note ket order: start with first space on very right, successively attach new spaces from the left.
Linear combinations:
 $| \phi_{\overline{\rho}} \rangle = | \phi_{\overline{\sigma}} e_{\overline{e}_{\alpha} - \sigma_{\alpha}} \rangle = | \phi_{\sigma} \rangle A^{\sigma}_{\sigma} \rho_{\sigma}$ (a)
Bras (Hilbert space dual vectors)
For bras, indices sit upstairs. E.g. basis bras:
For components of bras (w.r.t. a basis), indices sit downstairs:
 $\langle \phi^{\sigma} | = A^{\dagger} e_{\sigma} \langle \phi^{\sigma} |$ (b)
Complex conjugation [(3) is dual of (1)]:
 $A^{\dagger} e_{\sigma} = \overline{A}^{\sigma} e_{\sigma}$ (Hermitian
conjugation] (5) is dual of (2)]:
Note: for $A^{\dagger} e_{\sigma}$, the index $\overset{K}{\leftarrow}$ identifies basis bras (dual vectors), hence sits upstairs
the index e_{σ} identifies components of bras, hence sits downstairs
Basis for direct product space:
 $\langle \psi^{\sigma} | = \langle \psi^{\sigma} | \otimes (\psi^{\sigma} | \otimes \dots \otimes (\psi^{\sigma_{1}} | \otimes (\psi^{\sigma_{1}} | \otimes (\psi^{\sigma_{1}} | \otimes (\psi^{\sigma_$

Orthonormality

If	form orthonormal basis:	$\langle \varphi^{e} \varphi^{a} \rangle = \delta^{e}{}^{a}$	(14)

If $\{|\phi_{\mathsf{K}}\rangle\}$ form orthonormal basis, too: $\langle \phi^{\mathsf{K}} | \phi_{\mathsf{K}'}\rangle = \delta^{\mathsf{K}}_{\mathsf{K}'}$ (15)

Combined:

$$S^{\alpha}_{\alpha'} = \langle \phi^{\alpha} | \phi_{\alpha'} \rangle = A^{\dagger \alpha}_{\sigma} \langle \sigma | \sigma' \rangle A^{\sigma'}_{\alpha'} = A^{\dagger \alpha}_{\sigma} A^{\sigma}_{\alpha'} = (A^{\dagger} A)^{\alpha}_{\alpha'} (I_{b})$$

ry:
$$1 = A^{\dagger} A \implies A^{-1} = A^{\dagger}$$
(17)

Hence A is unitary:

$$A \implies A^{-1} = A^{+} \qquad (17)$$

$$\underline{Operators} \qquad \hat{O} = |\phi_{\vec{\sigma}}\rangle O^{\vec{\sigma}}_{\vec{\sigma}'} \langle \phi^{\vec{\sigma}'} | \qquad O^{\vec{\sigma}}_{\vec{\sigma}'} = \langle \phi^{\vec{\sigma}} | \hat{O} | \phi_{\vec{\sigma}'} \rangle \qquad (13)$$

Simplified notation

It is customary to simplify notational conventions for kets and bras:

In kets, use subscript indices as ket names: $|\vec{\sigma}\rangle \equiv |\rho_{\vec{\sigma}}\rangle \equiv |\epsilon_{i}, \epsilon_{2}, ..., \epsilon_{\mu}\rangle \equiv |\epsilon_{i}\rangle \otimes ...\otimes |\epsilon_{2}\rangle \otimes |\epsilon_{i}\rangle$ (19) In bras, use superscript indices as bra names: $\langle \vec{\mathfrak{s}} \mid \Xi \langle \varphi^{\vec{\mathfrak{s}}} \mid \Xi \langle \mathfrak{s}_{1}, \mathfrak{s}_{2}, ..., \mathfrak{s}_{N} \mid \Xi \langle \mathfrak{s}_{1} \mid \otimes \langle \mathfrak{s}_{2} \mid \otimes ... \otimes \langle \mathfrak{s}_{N} \mid {}_{(2b)}$ Now up/down convention for indices is no longer displayed; but it is still implicit!

Linear combination of kee Coefficient matrix = over	ts: ·lap:	$ \alpha\rangle \stackrel{(z)}{=} $	وے کا _م کامک	F	A S	(21) (22)
If direct products are inv Coefficient matrix = over	rolved: rlap:	β> ⁽⁴⁾ Α ^{6,62} β ⁼ (حیکھا ور ک آ ^{ھر ہ} (ھر ا ھ < قر ا ھ >	β β inde	A 62 ex-reading-order	(23) (24)
Linear combination of bra Coefficient matrix = over	as: Iap: ($\int d = \int d d $	$ e\rangle = \langle e x$	> (22) = A ^S x	At A index-reading-or	(25) (26) rder
If direct products are inve	olved:	$\langle \beta \stackrel{(12)}{=} F$	^{+ ۴} ^{6,6} , (۵,) ۵(۵	2	er (162) A ⁺ B	(27)
Coefficient matrix = overl	ap:	A ^{† B} ₆₂₆₁ = <	$\beta e_2 \rangle \otimes e_1 \rangle =$	< <u> (</u>) 8<52 B	$= \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$	(28)
Operators:) ō 〉 0 ^ë ;	:, < ; ; ,	0 ⁶ ء، = <۴	ô (ē' >	O ↓ ⁶ / ₅	(29)
In all these overlaps (22,24,26,28):	bra indices ket indices	: written upsta : written dowr	airs on A or A	A^{\dagger} , depicted b	y incoming arrov	ws vs

Mnemonic for arrow directions: 'airplane landing': flying in (up in air), rolling out (down on ground).

Mnemonic for arrow directions: 'airplane landing': flying in (up in air), rolling out (down on ground).

.