Tensor Network Basics (TNB-I)

1. Why study tensor networks? (Intro)

Because tensor networks provide a flexible description of quantum states.

Example: spin- s chain, with N sites

Local state space of site $\ell:$

$$
\begin{equation*}
\left|\sigma_{l}\right\rangle_{l} \in\left\{|1\rangle_{l},|2\rangle_{l}, \ldots|25+1\rangle_{l}\right\} \tag{I}
\end{equation*}
$$

Local state label:

$$
\begin{equation*}
6=1,2, \ldots, 25+1 \tag{2}
\end{equation*}
$$

Local dimension:

$$
\begin{equation*}
d=2 s+1 \tag{3}
\end{equation*}
$$

Shorthand:

$$
\begin{equation*}
\left|\sigma_{\ell}\right\rangle \equiv\left|\sigma_{\ell}\right\rangle_{\ell} \tag{4}
\end{equation*}
$$

Index ℓ on state label σ_{ℓ} suffices to identify the site Hilbert space $\left\rangle_{\ell}\right.$

Generic basis state for full chain of length N (convention: add state spaces for new sites from the left):

$$
\left|\sigma_{N}\right\rangle \otimes \ldots \otimes\left|\sigma_{\ell}\right\rangle \otimes \ldots\left|\sigma_{2}\right\rangle \otimes\left|\sigma_{1}\right\rangle \equiv\left|\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}, \ldots, \sigma_{N}\right\rangle=|\vec{\sigma}\rangle_{N} \varepsilon_{\text {identifies length of chain }}
$$

$$
\text { Hilbert space for full chain: } \quad \mathcal{\&}^{N}=\operatorname{span}\left\{|\vec{\sigma}\rangle_{N}\right\}
$$

General quantum state:
(ϵH^{N})

Dimension of full Hilbert space \dddot{H}_{\neq}^{N} : $\quad d^{N} \quad$ (\# of different configurations of $\vec{\sigma}$)
Specifying $|\psi\rangle_{N}$ involves specifying $C^{\vec{\sigma}}$, ie. d^{N} different complex numbers.
$C^{\vec{\sigma}}=C^{\sigma_{1}, \cdots, \sigma_{N}} \quad$ is a tensor of rank $\quad N \quad$ (rank $=$ number of legs)

Graphical representation: $\quad C^{\vec{\sigma}} \equiv \sigma_{1}^{\prime} l_{\sigma_{l}}^{C} l_{\mathrm{N}}^{\sigma^{\prime}}$ one leg for each index
(8)

Claim: such a rank L tensor can be represented in many different ways:

MPS:
matrix product state

PEPS: projected entangled-pair state

arbitrary tensor network

- a link between two sites represents entanglement between them
- different representations \Rightarrow different entanglement book-keeping
- tensor network = entanglement representation of a quantum state

Consider a spins chain, with Hamiltonian

$$
\begin{equation*}
H^{N}=\sum_{l=1}^{N-1} \bar{S}_{l} \cdot \bar{S}_{l+1}+\sum_{l=1}^{N} \bar{S}_{l} \cdot \vec{h}_{l} \tag{1}
\end{equation*}
$$

local state space for site $\ell:$

$$
\left|\sigma_{l}\right\rangle,{ }_{\ell}=1, . ., d=25+1
$$

We seek eigenstates of \mathcal{H}^{N} :

$$
\begin{equation*}
H^{N}\left|E_{\alpha}^{N}\right\rangle=E_{\alpha}^{N}\left|E_{\alpha}^{N}\right\rangle, \quad\left|E_{\alpha}^{N}\right\rangle \in Y_{\alpha}^{N} \tag{2}
\end{equation*}
$$

$$
\alpha=1, \ldots, d^{N}
$$

Diagonalize Hamiltonian iteratively, adding one site at a time:
$N=1$: Start with first site, diagonalize H^{1} in Hilbert space $\mathscr{4 \psi ^ { 1 }}$. Eigenstates have form

$$
\begin{equation*}
|\alpha\rangle \equiv\left|E_{\alpha}^{\prime}\right\rangle=\left|\sigma_{1}\right\rangle A_{\text {(sum over } \sigma_{1} \text { implied) }}^{\sigma_{1}} h_{\text {coefficient matrix }}^{\rightarrow} \quad(\alpha=1, \ldots, d) \quad \uparrow_{\sigma_{1}}^{\rightarrow} \tag{3}
\end{equation*}
$$

$N=2$: Add second site, diagonalize H^{2} in Hilbert space $M \psi^{2}$:

$$
\begin{equation*}
|\beta\rangle \equiv\left|E_{\beta}^{2}\right\rangle=\left|\sigma_{2}\right\rangle \otimes|\alpha\rangle B_{\uparrow}^{\alpha \sigma_{2}} \beta \quad\left(\beta=1, \ldots, d^{2}\right) \quad \alpha \rightarrow{\underset{\sigma}{\sigma_{2}}}_{B}^{B} \tag{4}
\end{equation*}
$$

(sum over α, σ_{2} implied) combine 'incoming' α, σ_{2} into 'outgoing' β

$$
=\underbrace{\left|\sigma_{2}\right\rangle\left(\otimes\left|\sigma_{1}\right\rangle\right.}_{|\vec{\sigma}\rangle_{2}} A^{\sigma_{1}} \alpha B_{\text {'matrix multiplication' for 'contracted' index } \alpha}^{\alpha \sigma_{2}} \beta
$$

$\mathrm{N}=3$: Add third site, diagonalize H^{3} in Hilbert space $4 \phi^{3}$:

$$
\begin{align*}
& |\gamma\rangle=\left|\sigma_{3}\right\rangle \otimes|\beta\rangle C^{\beta \sigma_{3}} \gamma \quad\left(\gamma=1, \ldots, d^{3}\right) \quad \beta \rightarrow{\underset{\sigma}{\sigma_{3}}}_{C}^{C} \tag{5}\\
& =\underbrace{\left|\sigma_{3}\right\rangle\left(\otimes\left|\sigma_{2}\right\rangle \otimes\left|\sigma_{1}\right\rangle\right.}_{|\vec{\sigma}\rangle_{3}} A^{\sigma_{1}} \underbrace{\alpha B^{\alpha \sigma_{2}}}_{\text {contracted indices }} \underbrace{\beta C^{\beta \sigma_{3}}}_{\alpha, \beta} \gamma
\end{align*}
$$

Continue similarly until having added site N. Eigenstates of H^{N} in Y_{α}^{N} have following structure:

$$
\begin{aligned}
& \left|E_{\delta}^{N}\right\rangle=|\delta\rangle=\left|\sigma_{N}\right\rangle \otimes \ldots \otimes\left|\sigma_{3}\right\rangle \otimes\left|\sigma_{2}\right\rangle \otimes\left|\sigma_{1}\right\rangle \underbrace{A_{\alpha}^{\sigma_{1}} B^{\alpha \sigma_{2}}{ }_{\beta} C^{\beta \sigma_{3}}{ }_{\gamma} \ldots D^{\mu \sigma_{N}}{ }_{\delta}} \\
& =|\vec{\sigma}\rangle_{N} C^{\vec{\sigma}} \quad \text { 'matrix product state' (MPS) } \\
& \equiv C^{\vec{\sigma}}{ }_{\delta}
\end{aligned}
$$

Nomenclature: $\quad \sigma_{\ell}=$ physical indices, $\quad \alpha, \beta, \gamma, \ldots=$ (virtual) bond indices

Alternative, widely-used notation: 'reshape' the coefficient tensors as

$$
\tilde{A}_{\alpha}^{\sigma_{1}} \equiv A_{\alpha}^{\sigma_{1}}, \quad \tilde{B}_{\alpha \beta}^{\sigma_{2}} \equiv B^{\alpha \sigma_{2}} \beta \quad, \tilde{C}_{\beta \gamma}^{\sigma_{3}} \equiv C^{\beta \sigma_{3}} \gamma
$$

to highlight 'matrix product' structure in noncovariant notation:

$$
|\delta\rangle=\left|\sigma_{1}\right\rangle \otimes \ldots \otimes\left|\sigma_{3}\right\rangle \otimes\left|\sigma_{2}\right\rangle \otimes\left|\sigma_{1}\right\rangle \tilde{A}_{\alpha}^{\sigma_{1}} \tilde{B}_{\alpha \beta}^{\sigma_{2}} \tilde{C}_{\beta \gamma}^{\sigma_{3}} \ldots \tilde{D}_{\mu \delta}^{\sigma_{N}}
$$

Comments

1. Iterative diagonalization of ID chain generates eigenstates whose wave functions are tensors that are expressed as matrix products.

Such states an called 'matrix product states' (MPS)
Matrix size grows exponentially:
for given $\sigma_{1}, A_{\underline{\alpha}}^{\sigma_{1}}$ has dimension $1 \times \underline{d} \quad$ (vector)
for given $\sigma_{2}, \quad B^{\frac{\alpha}{\sigma_{2}}} \frac{\beta}{}$ has dimension $\underline{d} \times \underline{d}^{2}$ (rectangular matrix)
for given $\sigma_{3}, \quad C^{\beta^{\sigma_{3}}} \underline{\gamma}$ has dimension $\underline{d}^{2} x \underline{d}^{3} \quad$ (larger rectangular matrix)

"Hilbert space is a large place"
Numerical costs explode with increasing N , so truncation schemes will be needed...
Truncation can be done in controlled way using tensor network methods!

Standard truncation scheme: use $\alpha, \beta, \gamma, \ldots \leq D$ for all virtual bonds

2. Number of parameters available to encode state:
$N_{\text {MPS }}$ scales linearly with system size, N
If N is large: $\mathcal{N}_{\text {MPS }} \lll d^{N}$

Why should this have any chance of working? Remarkable fact: for 1d Hamiltonians with local interactions and a gapped spectrum, ground state can be accurately represented by MPS!

Why? 'Area laws'! Tensor Network Basics II, section 1.

For exposition of covariant index notation, see chapters L2 \& L10 of
"Mathematics for Physicists", Altland \& von Delft, www.cambridge.org/altland-vondelft
Index and arrow conventions below, adopted throughout this course, are really useful, though not (yet) standard.

Kets (Hilbert space vectors)
For kets, indices sit downstairs. E.g. basis kets:

$$
\begin{equation*}
\left|\varphi_{\sigma}\right\rangle \tag{1}
\end{equation*}
$$

For components of kets (w.r.t. a basis), indices sit upstairs: $\left.\quad|\phi\rangle=\int \varphi_{\sigma}\right\rangle A^{\sigma}$
Repeated indices (always up-down pairs) are summed over, summation \sum_{σ} is implied.

Linear combinations of kets:

$$
\begin{equation*}
\left|\phi_{\alpha}\right\rangle=\left|\varphi_{\sigma}\right\rangle A_{\alpha}^{\sigma} \tag{2}
\end{equation*}
$$

Note: for $A^{\sigma}{ }_{\alpha}$ the index σ identifies components of kens, hence sits upstairs the index α identifies basis gets (vectors), hence sits downstairs

Basis for direct product space: $\left|\varphi_{\vec{\sigma}}\right\rangle \equiv\left|\varphi_{\sigma_{1} \sigma_{2} \ldots \sigma_{N}}\right\rangle \equiv\left|\varphi_{\sigma_{N}}\right\rangle \otimes \ldots \otimes\left|\varphi_{\sigma_{2}}\right\rangle \otimes\left|\varphi_{\sigma_{1}}\right\rangle$
Note et order: start with first space on very right, successively attach new spaces from the left.
Linear combinations: $\quad\left|\phi_{\beta}\right\rangle=\left|\varphi_{\sigma_{1} \sigma_{2} \ldots \sigma_{N}}\right\rangle A^{\sigma_{1} \sigma_{2} \ldots \sigma_{N}} \equiv\left|\varphi_{\vec{\sigma}}\right\rangle A_{\beta}^{\vec{\sigma}_{\beta}}$
Bras (Hilbert space dual vectors)
For bras, indices sit upstairs. E.g. basis bras:

$$
\begin{equation*}
\left\langle\varphi^{\sigma}\right| \tag{5}
\end{equation*}
$$

For components of bras (w.r.t. a basis), indices sit downstairs: $\langle\phi|=A^{\dagger}{ }_{\sigma}\left\langle\varphi^{\sigma}\right|$
Complex conjugation [(3) is dual of (1)]:

$$
\begin{equation*}
A_{\sigma}^{+}=\bar{A}^{\sigma} \tag{7}
\end{equation*}
$$

Linear combinations of bras:

$$
\begin{equation*}
\left\langle\phi^{\alpha}\right|=A^{+\alpha}{ }_{\sigma}\left\langle\varphi^{\sigma}\right| \tag{8}
\end{equation*}
$$

Complex conjugation [(5) is dual of (2)]:

$$
A^{+\alpha}=\bar{A}^{\sigma} \alpha \quad \begin{align*}
& \text { (Hermitian } \tag{9}\\
& \text { conjugation!) }
\end{align*}
$$

Note: for $A^{\dagger \alpha} \sigma$, the index α identifies basis bras (dual vectors), hence sits upstairs the index σ identifies components of bras, hence sits downstairs

Basis for direct product space: $\left\langle\varphi^{\sigma}\right| \equiv\left\langle\varphi^{\sigma_{1} \sigma_{2} \ldots \sigma_{N}}\right| \equiv\left\langle\varphi^{\sigma_{1}}\right| \otimes\left\langle\varphi^{\sigma_{2}}\right| \otimes \ldots<\left\langle\varphi^{\sigma^{W}}\right|$
Note bra order: opposite to that of gets in (3), so expectation values yield nested bra-ket pairs:

Linear combinations:

$$
\begin{equation*}
\langle\phi \beta|=A^{\dagger} \beta \sigma_{N} \ldots \sigma_{2} \sigma_{1}\left\langle\varphi^{\sigma_{1} \sigma_{2} \ldots \sigma_{N}}\right| \equiv A^{\dagger \beta} \bar{\sigma}_{R} \tag{12}
\end{equation*}
$$ reversed index order on tensor!

Complex conjugation [(12) is dual of (4)]: $\quad A^{\dagger} \beta \vec{\sigma}_{R}=\overline{A^{\vec{\sigma}}} \quad$ (Hermitian \quad conjugation!)
Complex conjugation [(12) is dual of (4)]: $\quad A^{\dagger} \beta \vec{\sigma}_{R}=\overline{A^{\vec{\sigma}}} \quad$ (Hermitian \quad conjugation!)

Orthonormality
If $\left\{\left|\varphi_{\sigma}\right\rangle\right\}$ form orthonormal basis: $\quad\left\langle\varphi^{6} \mid \varphi_{\sigma^{\prime}}\right\rangle=\delta^{6}{ }_{\sigma^{\prime}}$
If $\left\{\left|\phi_{\alpha}\right\rangle\right\}$ form orthonormal basis, too: $\left\langle\phi^{\alpha} \mid \phi_{\alpha^{\prime}}\right\rangle=\delta_{\alpha^{\prime}}^{\alpha}$
Combined: $\quad \delta^{\alpha}{ }_{\alpha^{\prime}}=\left\langle\phi^{\alpha} \mid \phi_{\alpha^{\prime}}\right\rangle=A^{\dagger \alpha}{ }_{\sigma}^{\left\langle\sigma \mid \sigma^{\prime}\right\rangle} A_{\delta^{\sigma} \sigma^{\prime}}^{\left\langle{ }_{\alpha^{\prime}}\right.}=A^{\dagger \alpha}{ }_{\sigma} A_{\alpha^{\prime}}^{\sigma}=\left(A^{\dagger} A\right)_{\alpha^{\prime}}^{\alpha}$
Hence A is unitary: $\mathbb{1}=A^{\dagger} A \quad \Rightarrow \quad A^{-1}=A^{\dagger}$

Operators

$$
\begin{equation*}
\hat{O}=\left|\phi_{\vec{\sigma}}\right\rangle O_{\vec{\sigma}}^{\vec{\sigma}}\left\langle\phi^{\vec{\sigma}^{\prime}}\right|, \quad O_{\vec{\sigma}}^{\vec{\sigma}}=\left\langle\phi^{\vec{\sigma}}\right| \hat{O}\left|\phi_{\vec{\sigma}} \vec{\sigma}^{\prime}\right\rangle \tag{17}
\end{equation*}
$$

Simplified notation

It is customary to simplify notational conventions for kets and bras:
In rets, use subscript indices as aet names: $|\vec{\sigma}\rangle \equiv\left|\varphi_{\bar{\sigma}}\right\rangle \equiv\left|\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right\rangle \equiv\left|\sigma_{N}\right\rangle \otimes \ldots\left(\otimes\left|\sigma_{2}\right\rangle(\otimes)\left|\sigma_{1}\right\rangle\right.$
In bras, use superscript indices as bra names: $\langle\vec{\sigma}| \equiv\left\langle\varphi^{\vec{\sigma}}\right| \equiv\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right| \equiv\left\langle\sigma_{1}\right| \oplus\left\langle\sigma_{2}\right|\left(\otimes \ldots \otimes\left\langle\sigma_{N}\right|\right.$ (20)
Now up/down convention for indices is no longer displayed; but it is still implicit!

Linear combination of tets:	$\|\alpha\rangle \stackrel{(2)}{=}\|\sigma\rangle A^{\sigma} \alpha$
Coefficient matrix = overlap:	$A^{\sigma} \alpha=\langle\sigma \mid \alpha\rangle$

If direct products are involved:

$$
|\beta\rangle \stackrel{(4)}{=}\left|\sigma_{2}\right\rangle \otimes\left|\sigma_{1}\right\rangle A^{\sigma_{1} \sigma_{2}} \beta
$$

index-reading-order
Coefficient matrix $=$ overlap:

$$
A^{\sigma_{1} \sigma_{2}} \beta=\left\langle\sigma_{1}\right| \otimes\left\langle\sigma_{2} \mid \beta\right\rangle
$$

Linear combination of bras:

$$
\langle\alpha| \stackrel{(8)}{=} A^{+\alpha}{ }_{\sigma}\langle\sigma|
$$

Coefficient matrix = overlap:

$$
A_{\sigma}^{+\alpha}=\langle\alpha \mid \sigma\rangle=\overline{\langle\sigma \mid \alpha\rangle} \stackrel{(22)}{=} \overline{A_{\alpha}^{\sigma}}
$$

If direct products are involved:

$$
\begin{equation*}
\langle\beta| \stackrel{(12)}{=} A^{+\beta} \sigma_{\sigma_{2} \sigma_{1}}\left\langle\sigma_{1}\right| \otimes\left\langle\sigma_{2}\right| \tag{27}
\end{equation*}
$$

Coefficient matrix = overlap:

$$
A+\beta_{\sigma_{2} \sigma_{1}}=\left\langle\beta \mid \sigma_{2}\right\rangle \otimes\left|\sigma_{1}\right\rangle=\overline{\left\langle\sigma_{1}\right| \otimes\left\langle\sigma_{2} \mid \beta\right\rangle} \stackrel{(24)}{=} \overline{A^{\sigma_{1} \sigma_{2}}}
$$

Operators:

$$
\begin{equation*}
\hat{O}^{(18)}=|\vec{\sigma}\rangle O^{\vec{\sigma}} \vec{\sigma} \cdot\left\langle\vec{\sigma}^{\prime}\right|, \quad O^{\vec{\sigma}} \vec{\sigma}^{\prime(11)}=\langle\vec{\sigma}| \hat{O}\left|\vec{\sigma}^{\prime}\right\rangle \quad 0 \hat{l}_{\vec{\sigma}}^{\vec{\sigma}^{\prime}} \tag{29}
\end{equation*}
$$

In all these overlaps (22,24,26,28):
bra indices: written upstairs on A or A^{\dagger}, depicted by incoming arrows ket indices: written downstairs on A or A^{\dagger}, depicted by outgoing arrows

Mnemonic for arrow directions: 'airplane landing': flying in (up in air), rolling out (down on ground).

