Problem set 6 (Discussion on July 2)

Problem 1

DNA overstretching transition. Single-molecule stretching experiments in the 1990s revealed that DNA undergoes an overstretching transition if subjected to forces of $\approx 65 \mathrm{pN}$ (Cluzel, et al., Science 1996; Smith, et al., Science 1996), where it lengthens about 1.7-fold compared to its B-DNA structure. A long-standing debate ensued about what exactly happens upon overstretching. The two possibilities usually considered are DNA melting (i.e. conversion of the double-stranded DNA to two single strands) and conversion of DNA to a double-stranded, but extended and underwound configuration called "S-DNA" ("S" for "stretched"). Van Mameren, et al., PNAS 2009, investigated this question using a combination of optical tweezers force-spectroscopy and fluorescence imaging (Available online at http: //www.pnas.org/content/106/43/18231.full.pdf).
a) What do van Mameren, et al. conclude about what happens during the overstretching transition, in terms of S-DNA vs. melting?
b) What evidence do they provide for their conclusion?
c) If we assume that overstretching could involve both the formation of S-DNA and DNA melting, how conclusive is their evidence? In particular, does their work rule out the formation of S-DNA upon overstretching?

Problem 2

FJC, revisted. Here we will explicitly derive some identities involving the radius of gyration R_{g}, which is a very useful measure for the size of a polymer in solution. We assume an ideal FJC (without self-avoidance) with N identical segments of length a. The vectors $\overrightarrow{r_{i}}$ point to segment i. One definition of the radius of gyration is

$$
\begin{equation*}
R_{g}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left\langle\left(\vec{r}_{i}-\vec{r}_{\text {mean }}\right)^{2}\right\rangle \tag{1}
\end{equation*}
$$

Where $\langle\ldots\rangle$ denotes the statistical average and $\vec{r}_{\text {mean }}$ the center of mass position:

$$
\begin{equation*}
\vec{r}_{\text {mean }}=\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{r_{i}} \tag{2}
\end{equation*}
$$

a) Show that the R_{g} can also be expressed as

$$
\begin{equation*}
R_{g}^{2}=\frac{1}{2 N^{2}} \sum_{i, j=1}^{N}\left\langle\left(\vec{r}_{i}-\vec{r}_{j}\right)^{2}\right\rangle \tag{3}
\end{equation*}
$$

b) Use the fact that for a FJC

$$
\begin{equation*}
\left\langle\left(\vec{r}_{i}-\vec{r}_{j}\right)^{2}\right\rangle=|i-j| a^{2} \tag{4}
\end{equation*}
$$

($|\ldots|$ denotes the absolute value; note that this identity gives the end-to-end distance result for $i=0$ and $j=N$) to show that for the FJC

$$
\begin{equation*}
R_{g}^{2}=\frac{1}{6} N a^{2} \tag{5}
\end{equation*}
$$

Hints: Turn the two summations into two integrals, starting from zero. Adjust the integral limits of the inner integral such that the absolute value is taken into account.

Problem 3

3D Gaussian chain. The end-to-end vectors of an ideal chain with N segments of length a in 3D are Gaussian distributed:

$$
\begin{equation*}
P(N, \vec{R})=\left(\frac{3}{2 \pi \cdot N a^{2}}\right)^{3 / 2} \exp \left(-\frac{3 R^{2}}{2 \cdot N a^{2}}\right) \tag{6}
\end{equation*}
$$

The mean is $\langle\vec{R}\rangle=0$ and the variance is $\left\langle\vec{R}^{2}\right\rangle=N a^{2}$ The square root of the mean squared radius is interpreted as the "unperturbed end-to-end distance".
a) Use the Boltzmann relation (i.e. the connection between probability and entropy) to calculate the free energy change if an ideal chain is perturbed from an unperturbed end-to-end distance to an arbitrary end-to-end distance R.
b) Calculate the force associated with the conformational change in b). Hint: You can use that $F=-\partial \Delta G / \partial R$.
c) What is the effective "spring constant" of an ideal chain? Compare your result to the result obtained in class by expanding the Langevin function for low forces.

