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Problem 2

Estimates of molecular forces.

a) C-O bond:
E = 84 kcal/mol = 84 kcal/mol · 4.184 kJ/kcal · 1000 J/kJ / (6 ·1023/mol)
= 5.9 ·10−19 J
F = E / ∆x = 5.9 · 10−19 J / (10−10 m) = 5.9 · 10−9 N = 5.9 nN

S-S bond:
E = 3.6 · 10−19 J
F = 3.6 nN
i.e. the rupture forces for covalent bond are in the nN range. For more informa-
tion, see Michel Crandbois, Martin Beyer, Matthias Hauke Clausen-Schaumann,
Hermann E. Gaub, How Strong Is a Covalent Bond?, Science (1999)

b) Non-covalent bonds in biological systems have to be stronger than E = 4 pN·nm
= 10−21 J and have to withstand forces larger than ≈ 4 pN·nm/1 nm = 4 pN,
otherwise thermal fluctuations would constantly break them. At the same time,
they are considerably weaker than covalent bonds with energies in the range of
E ≈ 10−19 J and forces ≈ 1 nN. Therefore, typical rupture forces for non-covalent
bonds are 10-100 pN and typical energies 10-100 pN·nm ≈ 2-20 times kBT .

Problem 3

Force-extension relationship for the 1D freely-jointed chain. We consider the
1D FJC model, with a two-state variable σ that takes on the value σi = +1 for each
segment that points “forward” in the z -direction, along the external applied force, or
σi = −1 for segments that point “backwards”, against the external force. The total
extension is then given by

z = b ·
N∑
i=1

σi (1)

To derive an expression for the average extension 〈z 〉, we take the ensemble average,
averaging over “states of the world” j , weighting the value that z takes on in each
state, zj by the probability of the state to occur pj :

〈z 〉 =
∑
j

pj · zj =
∑
σ1=±1

...
∑

σN=±1

p(σ1, ..., σN ) · z (2)

The probability for a state with energy Ej to occur is given by its Boltzmann factor,
properly normalized:

pj = p(σ1, ..., σN ) =
e−Ej /(kBT )

Z
=

e−(−f ·z )/(kBT )

Z
=

e(f ·b·
∑N

i=1 σi )/(kBT )

Z
(3)

1



where the normalization Z is the partition function (i.e. the sum over all Boltzmann
factors) and we have used the expression for the extension z from Equation 1.
Inserting the expression for the probabilities and for the length z into Equation 2, we
get

〈z 〉 =
∑
σ1=±1

...
∑

σN=±1

(
e(f ·b·

∑N
i=1 σi )/(kBT )

Z

)
·

(
b ·

N∑
i=1

σi

)
(4)

which can be written short hand by using the “logarithm trick” (you can verify this
by simply doing the derivative):

〈z 〉 = kBT
∂

∂f
ln

( ∑
σ1=±1

...
∑

σN=±1

e(f ·b·
∑N

i=1 σi )/(kBT )

)
(5)

We notice that the argument of the logarithm is just the product of N independent
and identical factors:

〈z 〉 = kBT
∂

∂f
ln

(( ∑
σ1=±1

e(f ·b·σ1)/(kBT )

)
· ... ·

( ∑
σN=±1

e(f ·b·σN )/(kBT )

))
(6)

This allows us to write it as a simply product and “pull down” the factor N :

〈z 〉 = kBT
∂

∂f
ln
(
e(f ·b)/(kBT ) + e(−f ·b)/(kBT )

)N
= kBTN

∂

∂f
ln
(
e(f ·b)/(kBT ) + e(−f ·b)/(kBT )

)
(7)

Finally, we carry out the derivative with respect to f ; to make the results look “pret-
ty”, we can additionally use a trigonometric identity:

〈z 〉 = N · b e
(f ·b)/(kBT ) − e(−f ·b)/(kBT )

e(f ·b)/(kBT ) + e(−f ·b)/(kBT )
= N · b · tanh(f · b/kBT ) (8)
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