Solutions to problem set 5

Problem 2

Estimates of molecular forces.

a) C-O bond:
$E=84 \mathrm{kcal} / \mathrm{mol}=84 \mathrm{kcal} / \mathrm{mol} \cdot 4.184 \mathrm{~kJ} / \mathrm{kcal} \cdot 1000 \mathrm{~J} / \mathrm{kJ} /\left(6 \cdot 10^{23} / \mathrm{mol}\right)$
$=5.9 \cdot 10^{-19} \mathrm{~J}$
$F=E / \Delta x=5.9 \cdot 10^{-19} \mathrm{~J} /\left(10^{-10} \mathrm{~m}\right)=5.9 \cdot 10^{-9} \mathrm{~N}=5.9 \mathrm{nN}$
S-S bond:
$E=3.6 \cdot 10^{-19} \mathrm{~J}$
$F=3.6 \mathrm{nN}$
i.e. the rupture forces for covalent bond are in the nN range. For more information, see Michel Crandbois, Martin Beyer, Matthias Hauke Clausen-Schaumann, Hermann E. Gaub, How Strong Is a Covalent Bond?, Science (1999)
b) Non-covalent bonds in biological systems have to be stronger than $E=4 \mathrm{pN} \cdot \mathrm{nm}$ $=10^{-21} \mathrm{~J}$ and have to withstand forces larger than $\approx 4 \mathrm{pN} \cdot \mathrm{nm} / 1 \mathrm{~nm}=4 \mathrm{pN}$, otherwise thermal fluctuations would constantly break them. At the same time, they are considerably weaker than covalent bonds with energies in the range of $E \approx 10^{-19} \mathrm{~J}$ and forces $\approx 1 \mathrm{nN}$. Therefore, typical rupture forces for non-covalent bonds are $10-100 \mathrm{pN}$ and typical energies $10-100 \mathrm{pN} \cdot \mathrm{nm} \approx 2-20$ times $k_{B} T$.

Problem 3

Force-extension relationship for the 1D freely-jointed chain. We consider the 1D FJC model, with a two-state variable σ that takes on the value $\sigma_{i}=+1$ for each segment that points "forward" in the z-direction, along the external applied force, or $\sigma_{i}=-1$ for segments that point "backwards", against the external force. The total extension is then given by

$$
\begin{equation*}
z=b \cdot \sum_{i=1}^{N} \sigma_{i} \tag{1}
\end{equation*}
$$

To derive an expression for the average extension $\langle z\rangle$, we take the ensemble average, averaging over "states of the world" j, weighting the value that z takes on in each state, z_{j} by the probability of the state to occur p_{j} :

$$
\begin{equation*}
\langle z\rangle=\sum_{j} p_{j} \cdot z_{j}=\sum_{\sigma_{1}= \pm 1} \ldots \sum_{\sigma_{N}= \pm 1} p\left(\sigma_{1}, \ldots, \sigma_{N}\right) \cdot z \tag{2}
\end{equation*}
$$

The probability for a state with energy E_{j} to occur is given by its Boltzmann factor, properly normalized:

$$
\begin{equation*}
p_{j}=p\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\frac{e^{-E_{j} /\left(k_{B} T\right)}}{Z}=\frac{e^{-(-f \cdot z) /\left(k_{B} T\right)}}{Z}=\frac{e^{\left(f \cdot b \cdot \sum_{i=1}^{N} \sigma_{i}\right) /\left(k_{B} T\right)}}{Z} \tag{3}
\end{equation*}
$$

where the normalization Z is the partition function (i.e. the sum over all Boltzmann factors) and we have used the expression for the extension z from Equation 1.
Inserting the expression for the probabilities and for the length z into Equation 2, we get

$$
\begin{equation*}
\langle z\rangle=\sum_{\sigma_{1}= \pm 1} \ldots \sum_{\sigma_{N}= \pm 1}\left(\frac{e^{\left(f \cdot b \cdot \sum_{i=1}^{N} \sigma_{i}\right) /\left(k_{B} T\right)}}{Z}\right) \cdot\left(b \cdot \sum_{i=1}^{N} \sigma_{i}\right) \tag{4}
\end{equation*}
$$

which can be written short hand by using the "logarithm trick" (you can verify this by simply doing the derivative):

$$
\begin{equation*}
\langle z\rangle=k_{B} T \frac{\partial}{\partial f} \ln \left(\sum_{\sigma_{1}= \pm 1} \ldots \sum_{\sigma_{N}= \pm 1} e^{\left(f \cdot b \cdot \sum_{i=1}^{N} \sigma_{i}\right) /\left(k_{B} T\right)}\right) \tag{5}
\end{equation*}
$$

We notice that the argument of the logarithm is just the product of N independent and identical factors:

$$
\begin{equation*}
\langle z\rangle=k_{B} T \frac{\partial}{\partial f} \ln \left(\left(\sum_{\sigma_{1}= \pm 1} e^{\left(f \cdot b \cdot \sigma_{1}\right) /\left(k_{B} T\right)}\right) \cdot \ldots \cdot\left(\sum_{\sigma_{N}= \pm 1} e^{\left(f \cdot b \cdot \sigma_{N}\right) /\left(k_{B} T\right)}\right)\right) \tag{6}
\end{equation*}
$$

This allows us to write it as a simply product and "pull down" the factor N :

$$
\begin{equation*}
\langle z\rangle=k_{B} T \frac{\partial}{\partial f} \ln \left(e^{(f \cdot b) /\left(k_{B} T\right)}+e^{(-f \cdot b) /\left(k_{B} T\right)}\right)^{N}=k_{B} T N \frac{\partial}{\partial f} \ln \left(e^{(f \cdot b) /\left(k_{B} T\right)}+e^{(-f \cdot b) /\left(k_{B} T\right)}\right) \tag{7}
\end{equation*}
$$

Finally, we carry out the derivative with respect to f; to make the results look "pretty", we can additionally use a trigonometric identity:

$$
\begin{equation*}
\langle z\rangle=N \cdot b \frac{e^{(f \cdot b) /\left(k_{B} T\right)}-e^{(-f \cdot b) /\left(k_{B} T\right)}}{e^{(f \cdot b) /\left(k_{B} T\right)}+e^{(-f \cdot b) /\left(k_{B} T\right)}}=N \cdot b \cdot \tanh \left(f \cdot b / k_{B} T\right) \tag{8}
\end{equation*}
$$

