Biophysics of Macromolecules SS 2020
PROBLEM SET 2
(1) Protein synthesis

- Bacteria divide every $20 \mathrm{~min} \Rightarrow$ Meed to double amount
- Bacteria have mass of $\approx 1 \mathrm{pg}$ i of protein! (\rightarrow see problem set 1)
- Assume 20% of the cell is protein

$$
\Rightarrow 0.2 \cdot 1 \mathrm{pg}=0.2 \cdot 10^{-12} \mathrm{~g} \text { of protein }
$$

or roughly $0.2 \cdot 10^{-12} \cdot 6 \cdot 10^{23} \approx 10^{11} \mathrm{Aa}$ of protein every go min; - Amino acid have on average 100 Ba.
\Rightarrow Need to synthesize 10^{9} aminoaerds in 20 min

- There are $2 \cdot 10^{4}$ ribosomes:

$$
\Rightarrow \text { Rate }=\frac{10^{9} \text { amino acids }}{2 \cdot 10^{4} \cdot 20 \mathrm{~min} \cdot 60 \frac{\mathrm{~s}}{\mathrm{~min}}} \approx 40 \frac{\text { amino acids }}{\mathrm{s}}
$$

for each ribose.
(2) Two-state protein folding
a)

$$
\begin{aligned}
& \begin{array}{l}
K_{0 q}=\frac{[N]}{[u]} \\
\frac{1-f u}{f u}=\frac{1-\frac{[u]}{[u]+[N]}}{\frac{[u]}{[u+[[N]}}
\end{array}=\frac{[u]+[N]-[u]}{[u]} \\
& \\
& =\frac{[N]}{[u]}=K_{e q}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \Delta G_{f}=-R T \ln \left(K_{e q}\right) \\
\Rightarrow & k_{e q}=e^{-\frac{\Delta G k}{R T}}=\frac{1-f u}{f u} \\
\Rightarrow & f_{u}\left(1+e^{-\frac{\Delta G f}{R T}}\right)=1 \\
\Rightarrow & f_{u}=\frac{1}{1+e^{-\frac{\Delta G f}{R T}}}
\end{aligned}
$$

you get the sour result if you
consider the two state system, w/ $G_{\text {unfolded }}=0$ and $\Delta G_{f}=G_{\text {folded }}-G_{\text {unfed }}$
The fraction unfolded is equal te
The probability of berg unfolded

$$
f_{u}=p_{n}=\frac{e^{\frac{-G_{u}}{R T}}}{z_{i}}
$$

where $z=\sum_{i=s t a t e s} e^{-G i / R T}$ partition
partition
funchal
c) See motleys script for the plotting routine.

d)

$$
\begin{aligned}
& f_{n}=\frac{1}{\left.1+e^{\left.-\frac{(-4 \mathrm{kcol})}{u_{n-1}}\right)} \simeq 0.6 \mathrm{kcol} / \mathrm{wal}\right)} \simeq 0.0013 \\
& =10^{-3}
\end{aligned}
$$

