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Problem Set 5

1 Two-point function of the Dirac current
Consider the free Dirac fermion described by the Lagrangian
£=56d—my. (1)
(i) Argue using the fermionic Gaussian path integral that the propagator for Dirac field is
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Note: we could find the propagator also using the canonical quantization for Dirac field as two-point

function (0] T4 (x)1(y) |0). The time-ordering for fermions has an additional minus sign if we exchange
the fermionic fields.

(ii) Calculate using Wick theorem (in the free theory) the two-point function
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of Dirac current -
g* (@) = Ple)y" () : (4)
where the normal ordering : ... : means that we do not consider the internal Wick contractions inside

of j#(x). Do not try to evaluate any of the momentum integrals.

(iii) Take the Fourier transform of the two-point function,

/ dizdiye™ i (0] j,(2)j, (y) 0) (5)
and show that it is equal to
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2 Photon self-energy using dimensional regularization
We want to evaluate the one-loop Feynman diagram
dk i i
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in dimensional regularization. We are in particular interested in this quantity for d = 2 (1 + 1 dimensional
QED) and d = 4 (3 4+ 1 dimensional QED). [Some of the formulas below are specialized to d = 2 but you
can try to stay general as long as you can, because also the 4d case has important applications.]

(i) Which correlation function in QED can have one-loop contribution of this form? What is the corre-
sponding Feynman diagram?



(i)

(iii)

(vii)

First of all, multiply the denominator factors } — m + ie by their conjugates to bring all the gamma
matrix algebra to numerator. Next derive and use the gamma matrix identities for Tr(y*~") and
Tr(y*+Y4Pv7) to eliminate the gamma matrices completely.

Now combine the bosonic propagators in the denominator using the Feynman parameters
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Shift the integration momentum k* — [* = k* + (---)g" to have only [? and no mixed terms [ - a in
the denominator. Finally the odd powers of integration momentum [* in the denominator will drop
out when integrated over [ by symmetry. You should arrive at something equivalent to
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By counting powers of [, this expression diverges logarithmically at large I. We thus use so called
dimensional regularization to calculate this integral. Pratically, what this means is that we will evaluate
this integral in d dimensions where d is considered as a complex parameter. To do so, we first use the
symmetry to replace I"1¥ — 11" (why?) and then perform a Wick rotation, 1° = il,.

Next we need to integrate the scalar integrals
/ dig 1 _ 1 T(2- 4) (10)
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If you want, derive these formulas. Even if you don’t want, use them to evaluate the integral. It turns
out that although the term with {% in the numerator was logarithmically divergent, after calculating
it in d dimensions the result has finite limit as d — 2, concretely
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The final expression that you get should be
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We can now consider the massless limit and find the final answer
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The previous result can be interpreted as a generation of photon mass by fermionic loop corrections.
Consider higher order corrections to photon two point-function whose Feynman diagrams are chains

of alternating photon propagators
—ip
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and fermionic loops calculated above
iI™ (q) = (¢*n™ — ¢"q") ill(q). (16)
The total contribution is geometric series which can be resummed. As result you should find
. w _ q'q” wov
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If TI(¢?) is regular at ¢> = 0 (which would be the case in d > 2), the quantum corrected photon
propagator still has pole at ¢ = 0 which signifies that there is no photon mass generated by the loop
corrections. On the other hand, we saw above that in 1 + 1 dimensions II(¢?) has a pole at ¢? = 0.
Compare the quantum corrected result with the usual propagator and determine the new photon mass.



3 BRST symmetry

(i)

In the BRST formalism, we compute expectation values by the following path integral
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where we defined M (z,y) = SF2(A®)) - Show that the action in (18) is invariant under

oab(y) -
SAM = 5¢CD" H® =: 5¢(sA)X, (19)
§H, = —6CA\F, =: 6¢(sH),, (20)
1
SH" = 6(§C“bchHc =: 6C(sH)". (21)

The parameter §¢ is odd. This ensures that the above transformations preserve statistics.

Let us look at the term Lyp = 3 F*(A)F®(A) in the Lagrangian (18). Let us introduce an auxiliary
field b®. Show that the replacement Lyf — L, where

1 ala a a
b = bbb (22)

leads to an equivalent path integral (Hint: Assume L’; f and integrate out b). The new action is now
invariant under

(sA)l = 6CDh,H”, (23)
(sH)y = ba, (24)
(sH)* = %C“bchHC, (25)

(sb)® = 0. (26)

Show that s% = 0.



