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Problem Set 5

1 Two-point function of the Dirac current

Consider the free Dirac fermion described by the Lagrangian

L = ψ(i/∂ −m)ψ. (1)

(i) Argue using the fermionic Gaussian path integral that the propagator for Dirac field is

SF (x− y) ≡ 〈0|Tψj(x)ψ̄k(y) |0〉 =

∫
d4p

(2π)4

i(/p+m)

p2 −m2 + iε
e−ip·(x−y) (2)

Note: we could find the propagator also using the canonical quantization for Dirac field as two-point
function 〈0|Tψ(x)ψ(y) |0〉. The time-ordering for fermions has an additional minus sign if we exchange
the fermionic fields.

(ii) Calculate using Wick theorem (in the free theory) the two-point function

〈0| jµ(x)jν(y) |0〉 (3)

of Dirac current
jµ(x) =: ψ(x)γµψ(x) : (4)

where the normal ordering : . . . : means that we do not consider the internal Wick contractions inside
of jµ(x). Do not try to evaluate any of the momentum integrals.

(iii) Take the Fourier transform of the two-point function,∫
d4xd4yeikx+ily 〈0| jµ(x)jν(y) |0〉 (5)

and show that it is equal to

(2π)4δ4(k − l)(−1)

∫
d4p

(2π)4

Tr(γµi(/k + /p+m)γνi(/p+m))

(p2 −m2 + iε)((k + p)2 −m2 + iε)
. (6)

2 Photon self-energy using dimensional regularization

We want to evaluate the one-loop Feynman diagram

iΠµν(q) = (−ie)2(−1)

∫
ddk

(2π)d
Tr

(
γµ

i

/k −m+ iε
γν

i

/k + /q −m+ iε

)
(7)

in dimensional regularization. We are in particular interested in this quantity for d = 2 (1 + 1 dimensional
QED) and d = 4 (3 + 1 dimensional QED). [Some of the formulas below are specialized to d = 2 but you
can try to stay general as long as you can, because also the 4d case has important applications.]

(i) Which correlation function in QED can have one-loop contribution of this form? What is the corre-
sponding Feynman diagram?



(ii) First of all, multiply the denominator factors /k −m + iε by their conjugates to bring all the gamma
matrix algebra to numerator. Next derive and use the gamma matrix identities for Tr(γµγν) and
Tr(γµγνγργσ) to eliminate the gamma matrices completely.

(iii) Now combine the bosonic propagators in the denominator using the Feynman parameters

1

AB
=

∫ 1

0

dx

[xA+ (1− x)B]2
. (8)

Shift the integration momentum kµ → lµ ≡ kµ + (· · · )qµ to have only l2 and no mixed terms l · a in
the denominator. Finally the odd powers of integration momentum lµ in the denominator will drop
out when integrated over l by symmetry. You should arrive at something equivalent to

iΠµν(q) = −2e2

∫
d2l

(2π)2

∫ 1

0

dx
2lµlν − ηµν l2 − 2x(1− x)qµqν + ηµν(x(1− x)q2 +m2)

(l2 + x(1− x)q2 −m2)2
(9)

(iv) By counting powers of l, this expression diverges logarithmically at large l. We thus use so called
dimensional regularization to calculate this integral. Pratically, what this means is that we will evaluate
this integral in d dimensions where d is considered as a complex parameter. To do so, we first use the
symmetry to replace lµlν → 1

d l
2ηµν (why?) and then perform a Wick rotation, l0 = il0E .

(v) Next we need to integrate the scalar integrals∫
ddlE
(2π)d

1

(l2E + ∆)2
=

1

(4π)d/2
Γ
(
2− d

2

)
∆2−d/2 (10)∫

ddlE
(2π)d

l2E
(l2E + ∆)2

=
1

(4π)d/2
d

2

Γ
(
1− d

2

)
∆1−d/2 (11)

If you want, derive these formulas. Even if you don’t want, use them to evaluate the integral. It turns
out that although the term with l2E in the numerator was logarithmically divergent, after calculating
it in d dimensions the result has finite limit as d→ 2, concretely∫

ddlE
(2π)d

l2Eη
µν − 2

d l
2
Eη

µν

(l2E + ∆)2
= − ηµν

(4π)d/2
Γ
(
2− d

2

)
∆1−d/2

d→2→ −ηµν

4π
. (12)

(vi) The final expression that you get should be

iΠµν(q) =
−ie2

π

(
q2ηµν − qµqν

) ∫ 1

0

x(1− x)dx

m2 − x(1− x)q2
. (13)

We can now consider the massless limit and find the final answer

iΠµν(q) =
(
q2ηµν − qµqν

) ie2

πq2
≡
(
q2ηµν − qµqν

)
iΠ(q). (14)

(vii) The previous result can be interpreted as a generation of photon mass by fermionic loop corrections.
Consider higher order corrections to photon two point-function whose Feynman diagrams are chains
of alternating photon propagators

−iηµν

q2
(15)

and fermionic loops calculated above

iΠµν(q) =
(
q2ηµν − qµqν

)
iΠ(q). (16)

The total contribution is geometric series which can be resummed. As result you should find

−i
(
ηµν − qµqν

q2

)
q2(1−Π(q2))

− i
qµqν

q2

q2
. (17)

If Π(q2) is regular at q2 = 0 (which would be the case in d > 2), the quantum corrected photon
propagator still has pole at q2 = 0 which signifies that there is no photon mass generated by the loop
corrections. On the other hand, we saw above that in 1 + 1 dimensions Π(q2) has a pole at q2 = 0.
Compare the quantum corrected result with the usual propagator and determine the new photon mass.



3 BRST symmetry

(i) In the BRST formalism, we compute expectation values by the following path integral

〈h(A)〉 =

∫
DADHDH̄h(A)ei(S[A]+

∫
d4xd4yH̄a(x)Ma

b (x,y)Ab(y)+λ
2

∫
d4xFa(A(x))Fa(A(x))), (18)

where we defined Ma
b (x, y) = δFa(A(x))

δαb(y)
. Show that the action in (18) is invariant under

δAµa = δζDµ
abH

b =: δζ(sA)µa , (19)

δH̄a = −δζλFa =: δζ(sH̄)a, (20)

δHa = δζ
1

2
CabcH

bHc =: δζ(sH)a. (21)

The parameter δζ is odd. This ensures that the above transformations preserve statistics.

(ii) Let us look at the term Lgf = λ
2F

a(A)F a(A) in the Lagrangian (18). Let us introduce an auxiliary
field ba. Show that the replacement Lgf 7→ L′gf , where

L′gf = − 1

2λ
baba − baF a, (22)

leads to an equivalent path integral (Hint: Assume L′gf and integrate out b). The new action is now
invariant under

(sA)µa = δζDµ
abH

b, (23)

(sH̄)a = ba, (24)

(sH)a =
1

2
CabcH

bHc, (25)

(sb)a = 0. (26)

Show that s2 = 0.


