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Problem Set 4

1 Feyman rules for Yang-Mills

Derive the momentum space Feynman rules for Yang-Mills theory with gauge fixing term Lgf = − 1
2γ (∂A)2

(i.e. the gluon propagator, three- and four-gluon interaction, the ghost propagator and the coupling between
ghosts and gluons).

2 Faddeev-Popov Gauge Fixing

Consider the electromagnetic Lagrangian

L = −1

4
FµνF

µν , (1)

where Fµν = ∂µAν − ∂νAµ.

(i) Show that Fµν = 0 for Aµ = ∂µλ. This implies, that the path integral∫
DAeiS[A]f [A] (2)

over gauge invariant functionals f (invariant under Aµ → Aµ+∂µλ) is expected to give infinite results.
In perturbation theory, this manifests itself in the kinetic operator, pµpν − gµνp2, not being invertible.

(ii) The process to cure this problem is called gauge fixing, as you undoubtedly know by now. We want to
restrict to a certain subclass of the A, given for example by an equation G(A) = 0, so that each of the
families Aµ + ∂µλ (Aµ fixed, λ variable) has a unique representative in this subclass. In (2), we then
restrict our integral to this subclass. We do this by factorizing the measure

DA = J DλDAδ(G(A)), (3)

and then drop the integration over the gauge parameter λ.

A popular choice is G(A) = ∂µA
µ. We define a quantity ∆ implicitly via

1 = ∆[Aµ]

∫
Dλ δ(∂µ(Aµ + ∂µλ)). (4)

and insert it into (2), so we have∫
Dλ
∫
DA∆[Aµ]eiS[A]f [A]δ(∂µ(Aµ + ∂µλ)). (5)

Show that the integrand under
∫
Dλ in (5) is actually independent of λ. For this, assume that Dλ and

DA are invariant under shifts in λ. Then show that ∆(A) is gauge invariant, and, using this, that you
can make the integrand independent of λ by a shift in the A integration variable. The upshot is, that
we can now safely drop the λ integration.



(iii) It remains to determine ∆(A). For this, we formally write

∆−1(A) =

∫
Dλ δ(∂µ(Aµ + ∂µλ)) =

∫
DGdet

(
δG(Aµ + ∂µλ)

δλ

)−1
δ(G), (6)

as we would do for ordinary integrals (we have basically done this in evaluating
∫∞
0

dp0δ(p2 −m2) on
the last exercise sheet). Hence

∆(A) = det

(
δG(Aµ + ∂µλ)

δλ

)∣∣∣∣
G=0

. (7)

Since ∆(A) is gauge invariant, we can choose an A, such that F = 0, so we can write

∆(A) = det

(
δG(Aµ + ∂µλ)

δλ

)∣∣∣∣
λ=0

, G = 0. (8)

Expand

G(Aµ(x) + ∂µλ(x)) = G(Aµ(x)) +

∫
d4yM(Aµ;x, y)λ(y), (9)

and determine M(Aµ;x, y). So
∆(A) = detM(A). (10)

You should find that detM(A) is actually independent of A and therefore does not contribute to the
path integral (5), up to a normalization. This is because A transforms linearly in λ. Do you know a
theory where this is not the case?

(iv) We see that we can simply set ∂µA
µ = 0. Write

Aµ = (ηµν − ∂µ∂ν

�
)Aν +

∂µ∂ν

�
Aν =: AµT +AµL, (11)

and show that this implies (with suitable boundary condition) AL = 0. Is the kinetic operator invertible
on the field AT ?

(v) In principle we can also consider the condition ∂µA
µ = C(x). with where C is some arbitrary function.

Because of gauge invariance, ∫
DAdetM(A)δ(∂µA

µ − C)f(A)eiS (12)

is independent of C. This implies that we can average it over C with some weight function W (C), and
change only its normalization. A common choice is

W (C) = exp

[
−i ξ

2

∫
d4xC2(x)

]
. (13)

Do the C integral to show that we effectively obtain the Lagrangian

Lξ = −1

4
F 2 − ξ

2
(∂µA

µ)2. (14)

What is the kinetic operator of this Lagrangian? Show that it that it is invertible for all ξ 6= 0,
and determine its inverse. Note that the above discussion shows that gauge invariant amplitudes will
nevertheless be independent of ξ.


