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Problem Set 4

1 Feyman rules for Yang-Mills

Derive the momentum space Feynman rules for Yang-Mills theory with gauge fixing term Lg¢ = —%(é’A)2
(i.e. the gluon propagator, three- and four-gluon interaction, the ghost propagator and the coupling between
ghosts and gluons).

2 Faddeev-Popov Gauge Fixing

Consider the electromagnetic Lagrangian

1
L= —ZFWF’“’, (1)

where F,, = 0,4, — 0, A,.

(i) Show that F},, =0 for A, = 9, . This implies, that the path integral

[ pacstaga (2)
over gauge invariant functionals f (invariant under A, — A, +09,\) is expected to give infinite results.
In perturbation theory, this manifests itself in the kinetic operator, p*p” — g*¥p?, not being invertible.

(ii) The process to cure this problem is called gauge fixing, as you undoubtedly know by now. We want to
restrict to a certain subclass of the A, given for example by an equation G(A) = 0, so that each of the
families A, + d, A (A, fixed, X variable) has a unique representative in this subclass. In (2), we then
restrict our integral to this subclass. We do this by factorizing the measure

DA = JDADAS(G(A)), (3)

and then drop the integration over the gauge parameter .

A popular choice is G(A) = 9, A*. We define a quantity A implicitly via
1=A[A,] /D)\ 0(0, (A" 4+ 0*N)). (4)
and insert it into (2), so we have
/ DA / DAA[A, S FAI5(0,,(A* + 07 \)). (5)

Show that the integrand under [ DA in (5) is actually independent of A. For this, assume that DA and
DA are invariant under shifts in A\. Then show that A(A) is gauge invariant, and, using this, that you
can make the integrand independent of A by a shift in the A integration variable. The upshot is, that
we can now safely drop the A integration.



(iii)

It remains to determine A(A). For this, we formally write

1
A‘I(A):/D)\(S((?”(A”—s—a“)\)):/DGdet (‘W) 5(G), (6)

as we would do for ordinary integrals (we have basically done this in evaluating fooo dpYs(p? — m?) on
the last exercise sheet). Hence

(7)

A(A) = det (M)

oA

G=0

Since A(A) is gauge invariant, we can choose an A, such that F' = 0, so we can write

A(A) = det <‘5G(A*;;5”A)> . G=o (8)
Expand
G(Au(z) + 0\ (@) = G(Au(2)) +/d4yM(Au;x,y))\(y)7 (9)
and determine M (A,;z,y). So
A(A) = det M(A). (10)

You should find that det M (A) is actually independent of A and therefore does not contribute to the
path integral (5), up to a normalization. This is because A transforms linearly in A\. Do you know a
theory where this is not the case?

We see that we can simply set 9, A* = 0. Write

wAY wAY
68A oo

AP = (pHV — 5
(n D) +g

A, = Al 4 Ak (11)

and show that this implies (with suitable boundary condition) Ay, = 0. Is the kinetic operator invertible
on the field Ap?

In principle we can also consider the condition 9, A* = C(x). with where C is some arbitrary function.
Because of gauge invariance,

/ DAdet M(A)§(0, A" — O) f(A)e™® (12)

is independent of C. This implies that we can average it over C' with some weight function W (C'), and
change only its normalization. A common choice is
£

W(C) = exp [—22 d*z 02(93)] . (13)

Do the C integral to show that we effectively obtain the Lagrangian
Lo ¢ 2
Le=——F°—2(9,A")". (14)
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What is the kinetic operator of this Lagrangian? Show that it that it is invertible for all £ # 0,

and determine its inverse. Note that the above discussion shows that gauge invariant amplitudes will
nevertheless be independent of €.



