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Exercises for Quantum Field Theory (TVI/TMP)

Problem set 2
Lie algebras, Classical Yang-Mills

1 Lie algebras
(i) What are the Lie algebras u(N), su(N), o(N), sl(N,R), gl(N,C) of Lie groups U(N), SU(N), O(N),
SL(N,R), GL(N,C)? What are their dimensions?

Solution: Given a Lie group G, its Lie algebra g is the vector space of infinitesimal transformations
around the identity. More precisely, given a curve v; € G, such that vy = 1, we expand

v =1 —itT + O(t?). (1)
Then the T are the elements of the Lie algebra g. We determine the Lie algebras of the groups given

in the problem.
e U(N):={M € Matnyxn(C)| MTM = 1}. Write M = 1 — itT + O(t?). Then,

MM = (14+itT" + O(t?)(1 — T + O(t?)) = 1 +4i(TT — T) + O(t?). (2)

The condition MTM =1 forces T = T't. Therefore, u(N) := {T € Matyxn(C)|Tt = T}.
e SU(N)=U(N)NSL(N,C), where

SL(N,C) := {M € Matnxx(C)| det M = 1}. 3)
We need that det(1 —itT) =1 — it trT + O(t?). We have
1 =det(1 —itT + Ot?) =1 — it trT + O(t?). (4)

It follows that the s[(N,C) = {T € Matnxn(C) [ trT = 0}. Also, su(N) = u(N)Nsl(N,C).

e The group O(N) is like U(N), but with real matrix entries. The derivation of its Lie algebra is
equivalent to that of U(N). It is o(N) = {T' € Matyxn(iR) |TT = T}. Here, iR means that T
takes only purely imaginary values.

e SL(N,R) is like SL(N,C) with real matrix entries. Hence, sl(N,R) = {T" € Matyxn(iR) | trT =
0}.

e GL(N,C) := {M € Matyxn(C)| det M # 0}, i.e. it is the group of invertible N x N matrices
with complex entries. For any T' € Maty«n(C), we can chose a small enough ¢ such that

v =1 —itT + O(t?) (5)

has non-zero determinant (this follows since the determinant depends continuously on its argu-
ment). Therefore, there are no restrictions put on the matrices in the Lie algebra of GL(N,C).
We conclude that gl(N,C) = Maty«n(C).

Let us discuss dimensions. Clearly, dimg gl(NV,C) = 2N2. The condition 7T = T makes half of the

entries dependent on the other half. Therefore, dimg u(N) = N2. For o(N), TT = T forces the entries
on the diagonal to be zero. The number of independent entries is therefore half the number of off-
diagonal elements, i.e. dimg 0(N) = w The condition trT" = 0 is a single equation. We conclude
that dimgsl(N,C) = 2N? — 2 and dimg s[(N,R) = N? — 1. Finally, since the matrices in u(N) have
real entries, trT = 0 only fixes one real variable in su(N). So, dimg su(N) = N2 — 1.



(i)

(iii)

Choose a basis of the Lie algebra s[(2, C) given by the matrices

R B P

Consider now the 3-dimensional adjoint representation and express the generators H, F and F' explicitly
as 3 X 3 matrices. Verify that the commutation relations are the same as before.

Solution: We recall that a representation (V,p) of a Lie algebra is a vector space V and a map
p: g — End(V) of Lie algebras. This means that p([a,b]) = [p(a), p(b)] := p(a)p(b) — p(b)p(a). The
adjoint representation is V' = g and p(a)b = [a, b] (Check that this is indeed a Lie algebra representation
by using the Jacobi identity!).

For s1(2,C) we take (6) as a basis over the complex numbers (in general, Lie algebras do not admit a
complex vector space structure, even when it is defined as a subspace of gl(/V,C). Any sl(/NV,C) is an
exception, since the condition tr 7" = 0 is C-linear). We compute

[E,F|=H, [H E|=2E, [H,F]=-2F. (7)

These are the same equations as those satisfied by ladder operators of a harmonic oscillator. In this case,
the energy difference between two nearby states would be 2. We want to find a matrix representation
for adg = [H, -],adg = [E, -],adr = [F, -] with respect to the basis (H, E, F) =: (e1, ea2, e3). That is,
we want to determine (adx), K = H, E, F by e;(adx)’s = (adk)(e;). By comparing to 6, we find

00 0 0 01 0 -1 0
(adg)=[0 2 0| (adg)={-2 0 0], (adp)=[0 0 0}. (8)
00 2 0 00 2 0 0

The commutation relatios of these matrices should still be (7). Since this is a trivial computation, we
don’t do it here.

Comment: The matrices (adk )] are actually the structure constants of the Lie algebra, up to an

imaginary factor. Let Ty = H, Ty, = E, T35 = F. The structure constants are defined by
[Ta, Tb] = iCq T, (9)
see also below. By comparison, we find that (adTi)i = szk
Show that the bilinear form given by a trace in the fundamental representation
Bfund(X,Y) = Trpyna(XY) (10)
is invariant in the sense that
B([Z,X],Y)+ B(X,[Z,Y]) =0. (11)

for any elements X, Y and Z of the Lie algebra sI(N, C). In the case of sI(2, C) evaluate the components
of Bfynq in the basis F, H, F.

Solution: Before we prove invariance of the trace, let us first explain why it is actually a notion of
invariance. Recall that the adjoint representation of g on itself is b — —i[a, b]. This is the infinitesimal
version of the action of the Lie group G on g, given by the following action.

b= Ad,-iat(b) = e~ be’, (12)

This is called the adjoint representation of the Lie group G (the infinitesimal version is the adjoint
of the Lie algebra). We say that a bilinear form B(-, -) on g is invariant, if it is invariant under the
adjoint action of G, i.e.

(Adgy(a), Adg(b)) = (a,b), Vg€ G,a,beg. (13)

Writing g = e~ we obtain (11) by differentiation with respect to ¢.

We prove (11) for any Lie algebra given with a matrix representation V having a trace (e.g. finite
dimensional). A trace satisfies

Tr([A, B]) = 0. (14)
Also, [A, -] acts as a derivation with respect to multiplication in End(V'). Therefore,
0 =Tr([4, BC]) = Tr([A, B]C) + Tr(B[A, C)). (15)

For sl(2,C) in the fundamental (2x2 matrix-) representation, we compute (A, B) with respect to the
basis (6). We find

(H,H)=2, (HE)=0, (H,F)=0, (E,E)=0, (E,F)=1, (FF)=0. (16)



(iv)

(vii)

In the case of Lie algebra sl(2, C) evaluate explicitly the components of the the Killing form
BK(X, Y) = Tradj adX ady (17)

(evaluated this time in the adjoint representation). Show that the Killing form is invariant. Here the
operator adx in adjoint representation acts via Lie brackets,

adx Y = [X,Y]. (18)

Solution: Instead of representation given in (6), we should now use (8). We find

Te(H,H) =8, Te(H,E)=0, Tr(H,F)=0, Ti(E,E)=0, Tr(E,F)=4, Ti(F,F)=0.
(19)
Note that Trfyunq(A, B) = & Treq(A, B). For sl(n, C), one would instead find

1
Tr pyna(A, B) = o Trqq(A, B). (20)

We show its invariance in (vii).

In simple Lie algebra like s[(2, C) all the invariant forms are proportional to each other. What is the
relative normalization between the two invariant forms that we introduced in the case of sl(2, C)?

Consider a general Lie algebra with commutation relations
[Taa Tb] = Z.C'cab:ro (21)

where T, form a basis of g as a vector space. Write the matrix elements of the Killing form B(Ty,T})
in terms of the structure constants C°p.

Solution: We already discussed above that, in the adjoint representation, (7,)% = iC?,. Therefore,
Troa(T;Ty) = Tis Ty, = —CiiCla. (22)
(*) Use two times the Jacobi identity
X, Y, 2]+ [V, [2, X]] + 2, [X, Y]] = 0 (23)

to show that the Killing form is always invariant.

Solution: As noted before, the Jacobi identity ensures that the adjoint representation is an actual Lie
algebra representation. Let us see why.

[ad,, adp](c) = ad,(adp(c)) — adp(ads(c)) = [a, [b, c]] — [b, [a, ]] Jagobi [[a,b], c] = adq3(c)- (24)

We use this to show invariance of By .

Bg(la,b],¢) + Bk (b, [a, c]) = Traqgj(adp) ade) + Treqj(ady adjq o)) (25)
= Tryq;([ade, adp) ade) + Treqi(adp[ade, ade]) (26)
~0. (27)

2 Gauge fields, curvature

(1)

Consider a set of fields ¢ transforming under gauge transformations as

V() = ¢ () = Ula)p(a) = e Ty (z) (28)

where T,, are some matrices satisfying the commutation relations [T, Ty] = iCS,T.. Let us introduce
a covariant derivative

Dy = 0utp + igATorh = 0p1) +igA . (29)

Find the transformation law for the gauge fields A}, such that D, transforms under the gauge trans-
formations in the same way as 1.



Comment: This is a continuation of what was discussed on problem set 1 to the case of non-abelian
gauge theories. Let T, be a set of generators of a Lie algebra g in some representation. Assume we have
a field ¢(x) transforming in that representation. In most cases, ¥(z) is itself a spinor. When we say
that ¢(z) transforms in some representation, we mean that each spinor component does so. So each
component of the spinor ¥(z) is itself a vector. On the other hand, a Lorentz transformation mixes
up the spinor components, but ignores the components of related to the gauge algebra. Consider for
example the theory of weak interactions. The fermion is a spinor 1 transforming in the fundamental
su(2) representation. As such, it has eight components ¥, a = 1,2, i = 1,2,3,4. The index a labels
the components corresponding to the gauge algebra. For example, a = 1 may be an electron and a = 2
may be a neutrino. An SU(2) transformation

Y ' — T + O(6°) (30)
mixes the electron field and the neutrino field. On the other hand, a Lorentz transformation
o s AbaY = ot — iwP? (M) a” + O(w?) (31)
induces a transformation
¥ () = (A ) = 20 (S0 (A7) + O(w?), (32)

where ¥,, = £[7,,7,). This only touches the spinor indices.

Solution: We make an ansatz

Dy =0, +igAu. (33)
We want that this transforms as D, — UD,1 under a gauge transformation v — U1). Therefore,
Dy DLUG = UD, . (34)
Hence, we want that
U~'D,U = D,. (35)
Explicitly,
U'DU=U"8, +igA),)U = (8, + U1 (8,U) +igU " A,U) = (0, +igA,). (36)
By comparison, we find that .
_ [
UTALU - il Y0uU) = Ay, (37)
or equivalently .
_ 1 _
AL =UA U + g(a#U)U L (38)
Since 0 =9, (UU!) = (8,U)U~' + U(9,U 1), some textbooks also write
_ { _
Al =UAU " - ;U(@LU b, (39)
Show that under infinitesimal gauge transformation we have
1
SAS = Eauea + CpP A, (40)
Solution: Write U = e~ "7« then
i 1
20U = (0,6, (41)
g g
Therefore
1 1
A, =UAU "+ E(aﬂaa)Ta = AUT, U™ + g(aﬂaa)Ta (42)
a - a - a 1 a
= AMT, —iAST,T,0" + iAST, T,6" + E(aﬂe VT, + O(6?) (43)
a N a 1 a
= AT, +iAL[T,, Ty)6" + ;(%9 VT, + O(6?) (44)
1
= AT, + AL CGT.0" + ;(BHQ“)TQ + 0(6?) (45)

a c a 1 a
= AT, — ASCHT,0" + 5(@0 VT, + O(6?). (46)



At the infinitesimal level, we write A), = A, + 64, = A%T, + 6ALT, + O(6?). Therefore,

1 1
AL = —Co0°AC + S0l = CpLo"AS + 0" (47)

(iii) Define the curvature tensor Gf,, by
[D,, D)) = igGy, Tath = igG . (48)

Express the matrices G, in terms of A, and the components G, in terms of Af.

Solution: We have D, = 0,, +igA,, so

[Dy, D)t = [0, +igAu, 0y + igAJ = ig[0u, ALY + ig[0,, ALl — g*[Au, AL (49)
=1g9(0, A, — 0, A, +ig[A,, A)]) = igG Ly (x). (50)

Note that the gauge field A, is a Lie algebra matrix. Hence, [4,,, A,] # 0. In components we have

GhTo = 0, A Ty — 0, AL T, +ig[Th, TC]AZAIC, = (0, A7 — 0L A}, — gC{chZA,ﬁ)Ta. (51)

(iv) How do the quantities G, transform under gauge transformations? How do Gf,, transform under
infinitesimal gauge transformations?

Solution: Recall that A}, = UA,U™" + é(@MU)U_l. We have

0, A, = (0,U)A U + U(0,A)U ™ +UA,U + ;(8M8VU)U’1 + é(&,U)(ﬁuU’l), (52)

1 1

a, AL = (B,U)AU T +U(0,A U +UABU " + g(fwﬂU)U’l + g(th)(auU’l), (53)
igAl A, = igUA, AU —UAU T 0,U)U = (8,U)A U — é(aMU)U‘l(a,,U)U‘l, (54)
igAL Al = igUA, AU —UAU 9,000 — (9,U)A,U " — é(a,U)U*(a“U)U*. (55)

(56)

We can simplify these expressions using U~(9,U)U~! = —9,U~!. By comparison we observe that
all terms involving a derivative of U or U~ cancel. It follows that

G, =UGL,U " (57)

This means that at the infinitesimal level, G transforms in the adjoint, i.e.

0G = —ig0°[T,, G . (58)

3 Yang-Mills action and equations of motion

(i) Show that the Lagrangian (QCD)

£ =~ T (GG + i, (D), — misoy (59)

is invariant under local gauge transformations. Here the fields ¢ form a vector in fundamental N-
dimensional representation of SU(N) and the invariant form is normalized such that Tr T, T} = %5,11,.

Solution: Recall from the last exercise that the field strength transforms as G — UGU ~!. Therefore,
Tr(GuG*) = Tr(UG, UU G U™ = Tr(U UG, UU 1 G*) = Tr(G . G*Y). (60)

Also, by the properties of the covariant derivative, D, v — UD,4 under ¢ — U1. Further, P
pUT =4pU~1. From this it is obvious that

(D)) — mabjo; (61)

is also invariant.



(i)

(iii)

Find the Euler-Lagrange equations of motion.

Solution: The action reads
1 P _
S = [ =5 T GG+ i, (Dw); — misyus. (62)
We first vary with respect to the conjugate spinor field 1). We find

0y = /Wj(ilplb)j — m;). (63)

Therefore, 1 has to satisfy the Dirac equation of a covariant derivative. Similarly, varying with respect
to v gives the conjugate Dirac equation, which is, as we have seen on the last problem set, equivalent
to the ordinary Dirac equation. Finally, variation with respect to the gauge field gives

048 = /— Tr (G, 0GM] — (SAZgszTa'y“wj. (64)
Let us write out explicitly the variation of the field strength.
0G = 0y Ay — 0, A, +1ig[6A,, A)) +ig[Au, 6AL]. (65)
If we multiply this with G*, we get

G5, = 2G" (9,04, +ig[A,, 64,]) = —2(,G* + ig[A,,, G"])6A, + ..., (66)

“

where “...” involves only terms with a total derivative and a total commutator. Explicitly,

oo =20,(G"0A,) + 2ig[A,, GFYOA,). (67)
These drop out after integration and taking the trace. Let us define
D,G" :=0,G" +ig[A,, G']. (68)

You can check that this defines a covariant derivative of G, i.e. it transforms properly under gauge
transformations. After collecting all the pieces, we get

0aS = /Q’I‘r(DHG“”(SA,,) — §ALg Ty Yy = /5Aﬁ((DHG‘“’)a — g0 Tuy" 1) (69)
We define j2 := gz/;jTav”wj. Then, the equations of motions are
(DuG"")a = Ja- (70)

Warning: We may be tempted to call j2 the Noether current. However, this is not the Noether
current of the theory. In fact, the real Noether current has additional terms coming from terms in the
field strength G (these are absent in abelian gauge theories). Deriving these additional contributions
is the subject of the next exercise.

Consider now the pure Yang-Mills action, i.e.
1 a v
L= — (Ge,Gh] . (71)

(where due to our normalization of the gauge fields we use the metric d,4 to raise and lower the indices
in the adjoint representation). It is in particular invariant under the global transformations. Find the
corresponding Noether currents.

Solution: Recall from the last exercise sheet that whenever there is a symmetry of the form

L(¢; + €0y, 0(¢; + €60;)) = L(¢5,005) + €0 K" (95, 00;) + O(¢*), (72)

there is a conserved current ar
Jt = ————6¢; — K*. (73)
0ues)



(iv)

We already saw that [GZVGZ“’] is invariant under local gauge transformations. Therefore, there appears

no total derivative in the variation of the Lagrangian £, i.e. K* = 0. We only have to compute

oL
9(0,.AL)

and 0pA%. Note that there are actually dim g independent global gauge transformations. We write

them infinitesimally as §,.

0L 1 s Ghs 1 s i war
90uAn) ~ 290 B(a, Ay — 20 (90500 — 95000)) = —GiY.

d

AT, = —
b dab

e T AT, (10 T — [Ty T,]AL = CLT4AL = §,A% = CLAC.

ap =0

The current is therefore
Jl,;/‘ — G[LVAC a
a

v~cb*

Use the equations of motion to show that these currents are conserved.

Solution:
v v LV 1 LV
8HJ£‘ = (8HG5 VA, Cach + GH 0, AL Cocyy = (8MGQ VAL Cocp + §Gf1 (8HA,C/ — &,AZ)CMZ,.
In components, the equations of motion are
Gl = g AL G Cape.

Note that iCeqp = iCS, = %Tr(TC[Ta,Tb]). This shows that C.,p is anti-symmetric in all its
We find

1
oIl = gAZGg”C’adeA,ﬁCacb + in{”(wa + chdeAZAf;)Cacb
= 26 CoarCade AL AT + SGE (CateCach + CoaceCas) AL, + 0

= gGgV(cebacacd + (cyclic in bed)) A% A T2 o,

(74)

(75)

(78)

indices.



