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Problem set 1

Dirac equation, global and local symmetries, Noether theorem

1 Gamma matrices

(i) Consider a four-tuple of 4× 4 matrices γµ, µ = 0, 1, 2, 3 satisfying the Clifford algebra relations

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν14×4. (1)

Verify that one possible explicit representation (Weyl) of these matrices is given by

γ0 =

(
0 12×2

12×2 0

)
γj =

(
0 σj
−σj 0

)
(2)

where σj are the usual 2× 2 Pauli matrices, σjσk = δjk12×2 + iεjklσl.

Solution: We use the convention ηµν = diag(+,−,−,−). We begin by checking the anti-commutator
of spatial γi, i = 1, 2, 3. We have

{γi, γj} =

(
0 σi
−σi 0

)(
0 σj
−σj 0

)
+ (i↔ j) =

(
−{σi, σj} 0

0 −{σi, σj}

)
. (3)

The Pauli matrices are defined to satisfy the Clifford relations in three spatially flat dimensions. (by
“spatial flat” we mean that we use the metric gij = δij) Hence, they satisfy the relation

{σi, σj} = 2δij12×2. (4)

The σi are to 3d Euclidean space what the γµ are to 4d Minkowski space. It immediately follows that
(1) is satisfied when i, j ∈ {1, 2, 3}. It remains to check (1) for (µ, ν) = (0, i) and (µ, ν) = (0, 0). But
these are trivial computations.

(ii) Argue using the defining relation (1) that the algebra of γ-matrices has a basis given by

1

γµ

γµν ≡ γ[µγν] ≡ 1

2
(γµγν − γνγµ) (5)

γ[µγνγρ]

γ[µγνγργσ]

How many of these matrices do we have in total? Hint: they should be as many as there are linearly
independent 4× 4 matrices.

Solution: By “the algebra of γ-matrices”, we mean the algebra generated by the γ-matrices. That is,
it is obtained by adding any power (including the zeroth power) of γ-matrices. This algebra structure
is what is called the Clifford algebra. We want to show that the matrices (5) form a linear independent
basis of the vector space underlying this algebra. We want to do so without making reference to the
explicit representation of the gamma matrices.



As a warm up, suppose that we have gamma matrices satisfying (1) with ηµν = 0. This means that
all the γ anti-commute. In particular, (γµ)2 = 0. In this case, the Clifford algebra is just the exterior
algebra with four generators. It is generated by

γµ1 · γµ2 · · · γµi , (6)

with 0 ≤ i ≤ 4 and µi < µj when i < j. There are 1 + 4 + 6 + 4 + 1 = 16 of these. Equivalently, we
could also use the antisymmetrized version of (6), since

γµ1 · · · γµi = γ[µ1 · · · γµi], (7)

where A[i1 · · ·Ain] = 1
|Sn|

∑
σ∈Sn sign(σ)Aiσ(1) · · ·Aiσ(n) . The sum runs over all members of the permu-

tation group Sn of n elements.

When ηµν = diag(+,−,−,−), the argument does not really change. The algebra is still generated by
(6), since any product of γ matrices γi1 · · · γin can be arranged such that i1 ≤ ... ≤ in up to a sign.
Further, by using (1), any power (γµk)n is proportial to 1 or γµk , depending on whether n is even or
odd.

(iii) Let us define the combination
γ5 ≡ iγ0γ1γ2γ3. (8)

Show that (ε0123 = +1)

γ5 = − i

4!
εµνρσγµγνγργσ. (9)

Show that γ5 anticommutes with γµ and compute (γ5)2.

Solution: We write

γ5 = iγ0γ1γ2γ3 =
i

4!

∑
σ∈S4

sign(σ)γσ(0)γσ(1)γσ(2)γσ(3) = − i

4!
εµνρσγ

µγνγργσ = − i

4!
εµνρσγµγνγργσ.

(10)
Note that ε0123 = (−)3ε0123 = −1. To check the anti-commuting property, suppose we are given a
fixed γµ, µ = 0, 1, 2, 3, and we want to commute it trough γ5. γµ commutes with itself and anti-
commutes with all the other γ matrices. Since γ5 contains each γ-matrix exactly once, this tells us
that γ5γµ = −γµγ5. Finally, anti-commutativity of γ-matrices allows us to write γ5 = iγ3γ2γ1γ0.
Hence,

γ5γ5 = (i)2(γ3γ2γ1γ0)(γ0γ1γ2γ3) = −(γ3)2(γ2)2(γ1)2(γ0)2 = −(−1)(−1)(−1)(+1) = 1. (11)

Comment: Observe the following. The properties we just derived tell us that, when we define
γ4 = iγ5, the set γM ,M =, 0, 1, 2, 3, 4 satisfy (1) in five dimensional space-time. In 4d however, γ5 can
serve a different purpose. Since (γ5)2 = 1, we have orthogonal projectors PR/L = 1

2 (1 ± γ5) onto the
eigenspaces of γ5 with eigenvalues ±1. Spinors with eigenvalue +1 are called right-handed. Likewise,
spinors with eigenvalue −1 are called left-handed. The massless Dirac equation

γµ∂µψ = 0 (12)

decomposes into equations for left- and right-handed fermions. In 5d, γ4 = iγ5 enters itself in the
Dirac equation, therefore there is no splitting in right-handed and left-handed components (this is true
in any odd dimension). We cannot define a new γ5 as we did in 4d, since γ0 · · · γ4 is proportional to
the identity.

(iv) Let us define the Dirac conjugate to be a combination of hermitian conjugation and multiplication by
γ0:

ψ̄ ≡ ψ†γ0. (13)

Verify that in our explicit representation of γ matrices (2) we have

γ0(γµ)†γ0 = γµ (14)

and in particular that γ0 is hermitian. What does it imply about (γ5)†? Why is it impossible to find
a representation of γµ where γj would be hermitian?



Solution: Clearly, γ0γ0γ0 = γ0 and γ0 is hermitian. Moreover,

γ0γiγ0 =

(
0 −σi
σi 0

)
=

(
0 −σ†i
σ†i 0

)
= γi, (15)

where we used that the Pauli matrices are hermitian. Since (γ0)2 = 1 and γ0γi = −γiγ0, it follows
that the γi are anti-hermitian. For γ5, this means that

(γ5)† = −i(γ3)†(γ2)†(γ1)†(γ0)† = iγ3γ2γ1γ0 = iγ0γ1γ2γ3 = γ5, (16)

so γ5 is hermitian.

Assume now that we found a representation of the γµ such that all of them are hermitian. By a
similar calculation as above, it follows that γ5 is anti-hermitian in this case. This means that it has
purely imaginary eigenvalues. On the other hand, we showed above that γ5 = 1, independent of the
representation of the γµ. But this contradicts that γ5 has only imaginary eigenvalues.

2 Dirac equation

(i) The Dirac fermion is described by a 4-component vector of functions ψ(x) on which the γ-matrices act
by usual matrix multiplication. Show that the Dirac equation

(iγµ∂µ −m)ψ(x) = 0 (17)

implies that each component of ψ satisfies the Klein-Gordon equation. Hint: act on the Dirac equation
with (−iγν∂ν −m).

Solution: Recall that the Klein-Gordon equation is (� + m2)φ = 0, where � = ηµν∂µ∂ν is the
spacetime laplacian. As given in the hint, we act on the Dirac equation by (−iγν∂ν −m). This gives
us

(γµγν∂µ∂ν +m2)φx = (
1

2
{γµ, γν}∂µ∂ν +m2)ψ(x) = (ηµν∂µ∂ν +m2)ψ(x) = (� +m2)ψ(x). (18)

Observe that (� + m2) acts diagonally on the four-component spinor ψ(x). Therefore, if ψ satisfies
the Dirac equation, each component of ψ satisfies Klein-Gordon.

(ii) Derive the Dirac equation for conjugate spinor ψ̄(x).

Solution: Recall that ψ̄(x) = ψ†γ0. To obtain an equation for ψ̄, we conjugate the Dirac equation,

−i∂µψ†(x)(γ†)µ − ψ†(x)m = 0. (19)

We act on it with γ0 from the right. This gives

0 = −i∂µψ†(x)(γ†)µγ0 −mψ†(x)γ0 = −i∂µψ†(x)γ0γµ − ψ†(x)γ0m = −i∂µψ̄(x)γµ − ψ̄(x)m, (20)

where we used γ0γµγ0 = (γ†)µ from problem 1 (iv). The conjugate Dirac equation is sometimes written
as

ψ̄(x)(i
←
/∂ +m) = 0. (21)

(iii) Derive the Dirac equation using the principle of the minimal (extremal) action from Lagrangian

L = ψ̄(iγµ∂µ −m)ψ. (22)

Solution: The action is defined to be

S =

∫
d4 xL =

∫
d4 x ψ̄(iγµ∂µ −m)ψ. (23)

The Dirac fermion is a spinor with four complex components. To find the critical points of the
action, we should therefore vary with respect to 8 variables. The easiest way to do this is to treat
ψ = (ψ1, ψ2, ψ3, ψ4) as complex variables. We then vary with respect to these variables and their



complex conjugates. The advantage is that when we vary with respect to ψ, the variation of ψ† is zero,
and vice versa. We first vary S with respect to ψ†. We find

δ̄S =

∫
d4 x δψ̄(iγµ∂µ −m)ψ. (24)

Vanishing of δ̄S gives the Dirac equation. Varying with respect to ψ gives

δS =

∫
d4 x ψ̄(iγµ∂µ −m)δψ =

∫
d4 x (−i∂µψ̄γµ − ψ̄m)δψ. (25)

This vanishes if and only if the conjugate Dirac equation is satisfied. We saw in the last problem that
the Dirac equation implies the conjugate Dirac equation. Therefore, the critical points of S are the
solutions to the Dirac equation.

3 Noether currents for Dirac equation

(i) (Noether’s theorem) Assume that we have a Lagrangian L(φj , ∂φj) depending on fields and their first
derivatives that is invariant under an infinitesimal transformation of the fields (up to a total derivative)

L(φj + εδφj , ∂(φj + εδφj)) = L(φj , ∂φj) + ε∂µK
µ(φj , ∂φj) +O(ε2). (26)

Show using the Euler-Lagrange equations that the current

Jµ :=
∂L

∂(∂µφj)
δφj −Kµ (27)

is conserved if the equations of motion are satisfied.

Solution: We differentiate (26) with respect to d
d ε |ε=0. We find

∂L
∂φj

δφj +
∂L

∂(∂µφj)
∂µδφj = ∂µK

µ(φj , ∂φj). (28)

We can use the equations of motion ∂L
∂φj

= ∂µ
∂L

∂(∂µφj)
on the left hand side,

∂L
∂φj

δφj +
∂L

∂(∂µφj)
∂µδφj = ∂µ

∂L
∂(∂µφj)

δφj +
∂L

∂(∂µφj)
∂µδφj = ∂µ(

∂L
∂(∂µφj)

δφj). (29)

Equating this to the right hand side of (28) reads

∂µ(
∂L

∂(∂µφj)
δφj) = ∂µK

µ. (30)

Therefore,

∂µ(
∂L

∂(∂µφj)
δφj −Kµ) = 0, (31)

i.e. the current Jµ := ∂L
∂(∂µφj)

δφj −Kµ is conserved.

(ii) Notice that the Dirac action is invariant under global U(1) transformations acting as

ψ(x) 7→ e−iqαψ(x). (32)

where q is the charge of field ψ. Show that the corresponding Noether current is in this case

Jµ = qψ̄γµψ. (33)

Verify that it is conserved if the Dirac equation of motion is satisfied.

Solution: The Dirac action ∫
d4 x ψ̄(iγµ∂µ −m)ψ (34)



is obviously invariant under phase shifts ψ(x) 7→ e−iqαψ(x) since it only involves products of ψ with
its complex conjugate. Since this does not involve total derivatives, Kµ = 0 in the notation of (26).
Infinitesimally, the transformation is

δψ =
d

dα

∣∣∣∣
α=0

(e−iqαψ(x)) = −iqψ(x), δψ̄ =
d

dα

∣∣∣∣
α=0

(eiqαψ̄(x)) = iqψ̄(x). (35)

Let us write ψa for the components of ψ. We obtain

Jµ =
∂L

∂(∂µψa)
δψa +

∂L
∂(∂µ(ψ∗)a)

δ(ψ∗)a = iψ̄aγµab(−iqψ
b(x)) + 0 = qψ̄γµψ. (36)

We used that L does not depend on the derivatives of the conjugate field when written in the form
(34).

We write the Dirac equations as

γµ∂µψ = −imψ and ∂µψ̄γ
µ = imψ̄. (37)

Then,
∂µJ

µ = q((∂µψ̄γ
µ)ψ + ψ̄(γµ∂µψ)) = imqψ̄ψ − imqψ̄ψ = 0. (38)

4 Local symmetries and QED

(i) Verify that the Dirac action is not invariant under local gauge transformations

ψ(x) 7→ e−iqα(x)ψ(x) (39)

but becomes invariant if we replace the derivative ∂µψ by a covariant derivative

Dµψ = (∂µ + ieqAµ)ψ (40)

where Aµ(x) is the gauge field and if we simultaneously transform the gauge field as

Aµ 7→ Aµ +
1

e
∂µα. (41)

Solution: The Dirac equation transforms under ψ(x) 7→ e−iqα(x)ψ(x) as

(iγµ∂µ −m)ψ(x) = 0 7→ (iγµ∂µ −m)e−iqα(x)ψ(x) = e−iqα(x)(iγµ∂µ + qγµ∂µα(x)−m)ψ(x) = 0. (42)

We see that if ψ(x) satisfies the Dirac equation, e−iqα(x)ψ(x) will no longer satisfy it unless α is a
constant. Equivalently, we could argue on the level of the action. The Lagrangian of the free fermion
is not invariant under ψ(x) 7→ e−ieα(x)ψ(x). We postpone the question involving the gauge field to the
next question.

(ii) How does Dµψ transform under the gauge transformations?

Solution:

Dµψ = (∂µ + ieqAµ)ψ 7→(∂µ + ieqAµ +
iqe

e
∂µα)e−iqα(x)ψ(x) (43)

= e−iqα(x)(∂µ + ieqAµ + iq∂µα− iq∂µα)ψ(x) = e−iqα(x)Dµψ. (44)

We say that Dµψ transforms covariantly1 with respect to the gauge transformation. When we use the
covariant derivative in the Dirac equation, we find that it is indeed invariant, since

(iγµDµ −m)ψ(x) = 0 7→ e−iqα(x)(iγµDµ −m)ψ(x) = 0. (45)

(iii) Show that the replacement of an ordinary derivative by the covariant one is equivalent to additional
coupling of the form −eJµAµ in the Lagrangian where Jµ is the Noether current that we found
previously.

1This means that Dµψ transforms like ψ.



Solution: The Dirac Lagrangian with covariant derivative is

Lcov =ψ̄(x)(iγµ∂µ − eqγµAµ −m)ψ(x) = ψ̄(x)(iγµ∂µ −m)ψ(x)− eqψ̄(x)γµAµψ(x) (46)

=Lcov|Aµ=0 − eAµqψ̄(x)γµψ(x). (47)

In problem 3 (ii), we found the Noether current Jµ = qψ̄(x)γµψ(x). Therefore, we have indeed

Lcov − Lcov|Aµ=0 = −eJµAµ. (48)

(iv) Let us define the curvature (electromagnetic tensor) Fµν such that

[Dµ, Dν ]ψ(x) = iqeFµν(x)ψ(x). (49)

Express Fµν(x) in terms of Aµ and find how it transforms under the gauge transformations.

Solution:

[Dµ, Dν ]ψ = [∂µ + ieqAµ, ∂ν + ieqAν ]ψ = ieq([∂µ, Aν ]− [∂ν , Aµ])ψ = ieq(∂µAν − ∂νAµ)ψ. (50)

When we compare this to (49), we see that Fµν = ∂µAν − ∂νAµ. Under the gauge transformation
Aµ 7→ 1

e∂µα, the curvature transforms as

Fµν 7→ ∂µAν +
1

e
∂µ∂να− ∂νAµ −

1

e
∂ν∂µα = ∂µAν − ∂νAµ = Fµν , (51)

so it is in fact gauge invariant.

(v) The full Lagrangian of QED with Dirac matter is

L = −1

4
FµνF

µν + iψγµDµψ −mψψ. (52)

Find the equations of motion.

Solution:. We need to vary the action both with respect to Aµ and ψ. When we vary with respect to
Aµ, we find

δAS =

∫
d4 x−1

2
FµνδFµν−eJµδAµ =

∫
d4 x−Fµν∂µδAν−eJµδAµ =

∫
d4 x(∂µF

µν−eJν)δAν . (53)

We find ∂µF
µν = Jν as one equation of motion. These are in fact the inhomogeneous Maxwell

equations. On the other hand, variation with respect to ψ gives the covariant Dirac equation (iγµDµ−
m)ψ (the computation is the same as in problem 2 (iii), where we covered the non-covariant case).


