More generally, we can assume that is is a non-linear functional of the antilields $\phi^{I I}$ with an expansion of the form

$$
\begin{aligned}
& S^{\prime}\left[\phi_{1} \phi^{*}\right]=S_{0}\left[A_{\mu}\right]+\int_{(1)} H a f a^{r}[A](0) \quad A^{*} r \\
&(-1) \\
&+\frac{1}{2} \int H^{a} H^{6} f_{a b}^{C}[H] H^{* c} \\
&(1)(1)(0)(-2) \\
&+\frac{1}{2} \int H^{a} H^{b} f^{\prime s} a b[M] A^{*} A^{* s}
\end{aligned}
$$

Then the master equation $0 \stackrel{\vdots}{=} \frac{\delta_{12} S^{\prime}}{\delta_{\phi^{* I}}} \frac{S_{L} S^{\prime}}{S_{\phi I}}$ gives

$$
\begin{aligned}
& \theta^{a} \leadsto 1 t^{a}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\int H^{a} H^{b} f_{a b}^{r s}[A] H^{*} r \frac{S S}{S A^{S}}\right\}=0 \begin{array}{l}
\text { for } \mathrm{frab}_{a b}=0 \\
\text { or } \begin{array}{l}
\delta S_{0}=0 \\
\delta A S_{\text {eam. }} .
\end{array}
\end{array}
\end{aligned}
$$

Interpretation: if $f^{r s}$ ob $\neq 0$ then we have an open symmeky algebra (closes only mod. equations of motion)

This occurs, for example, in supergravity where the busy algebra closes only up. to equations of motion.

For open algebras $s^{2} \neq 0$ but BV can still be applied.

The BV-generalisation of the BEST formalism is also required when the gauge invanance is kelucible, ie

$$
\begin{aligned}
A_{\mu} \sim \quad A_{\mu}+S\left(A_{\mu}\right) & =A_{\mu}+D_{\mu} H \\
\text { with } H & \sim H+s(H)
\end{aligned}
$$

which requires h introduce ghosts for the ghosts (e.g. Sting field theory or gerber (p-form gauge fields) (see below)
For a generic B-V action the master equation expresses the invariance of ' S ' under a generalised BRST transformation. In order to see this we first define the antibraket. If F and G are differentiable functions on \mathcal{F} then

$$
(F, G) \equiv \int \frac{\delta_{R} F}{\delta \phi^{I}} \frac{\delta_{l} G}{\delta \phi^{* I}}-\frac{\delta_{R} F}{\delta \phi^{* I}} \frac{\delta_{l} G}{\delta \phi^{I}}
$$

Then $\delta \Phi^{I}=\left(S, \phi^{I}\right)$ and $\delta \Phi^{* I}=\left(S, \phi^{* I}\right)$ is the generalised BRST symme and $S S=(S, S)=0$ by the Br-master equation (Exercise)

Illustation: 2-form gauge hietd, $A_{\mu v}^{[2]}=-A_{\nu \mu}^{[2]}$
Fieldstrength: $F_{\sim v x}^{[33}=\partial \operatorname{ca}^{[2]} A_{v i]}^{[2]}$, or $F^{[3]}=d A^{[2]} \quad$ hode $\frac{d}{}$
Action:

$$
S_{0}\left[A^{(23}\right]=-\frac{1}{2} \int F^{(3) V \lambda} F_{N \nu \lambda}^{(3)}=-\frac{1}{2} \int F_{\Lambda}^{(3)} * F^{(3)}
$$

gange invancuuce: $A_{V V}^{[23} \mapsto A_{\nu V}^{[23}+\partial_{[14}^{\left[\sigma_{V}\right]} \sim A_{i v}^{[1]}$ or $\quad A^{[2]} \longmapsto A^{[2]}+d o^{[1]^{c} \sim} \sim 1$-form
Furthermace $\sigma_{v}^{[1]} \sim \sigma_{v}{ }^{[1]}+\partial v \sigma^{[0]}$

$$
\sigma^{[1]} \sim \sigma^{[1]}+d \sigma^{[0]}
$$

gange for gouge: rechaible gauge inv.
In the BV formulation we iulvoluce
$H^{[1]}$ for $\sigma^{[1]}$ and $H^{[0]}$ for $\left.\sigma^{[0]}\right\}\left\{\Phi^{I}\right\}=\left\{A^{[0]}, H^{[1]}, H^{[0]}\right\}$ (c) (1) (2)
(1)
(2)

Antifields: $\left\{\Phi^{* I}\right\}=\left\{\begin{array}{ll}A_{j, ~ i 3 *}^{i n}, & H^{[13 *}, \\ (-1) & (-2) \\ (-3)\end{array}\right\}$

$$
\begin{aligned}
B V \text {-achion: } S=S_{0} & +A^{\int(2] \times \mu \nu} \partial_{\mu} H_{\nu}^{[1]}
\end{aligned}+\underbrace{\int H^{[1] *} \mu}_{\int A^{[1]} \lambda * d H^{[1]}} \partial_{\mu} H^{[0]}
$$

In order to fix the gauge we now introduce
2 trivial pairs

$$
\left(\bar{H}_{(-1)}^{[1]}, b_{(0)}^{[1]}\right) \text { and }\left(\bar{H}^{[0]}, b^{[0]}\right)
$$

together with their oufi-fields:

$$
\underset{(0)}{\left(\bar{H}^{[1] *}, b^{[1] *}\right)} \text { aced }\left(\mathbb{H}_{(1)}^{[\cos x}, b^{[0] *}\right)
$$

and invonant achion

$$
S_{t}=\int \bar{H}^{[1]} * \mu b^{[1]} \mu+\int \bar{H}^{[0] *} b^{[0]}
$$

Finally we inhoduce a gouge-fixing fermion to eliminate the anti-fields.

Exercise

