The origin of life as a planetary phenomenon

Dimitar D. Sasselov, John P. Grotzinger and John D. Sutherland, 5th February 2020

Paul Waldmann and Kyeong Ro Lee 05.06.2020

Seminar: Physics of Early Evolution and Emergence of Life

Table of contents

- Introduction & Assumptions
- Prebiotic chemistry
 - HCN as a feedstock
 - Cyanosulfidic chemistry
- Planetary Conditions
 - Earth-Mars Comparison
 - Planetary conditions in general (Atmosphere, Hydrosphere, UV irradiation)
- Conclusions and Outlook
- References

The origin of life as a planetary phenomenon

Cyanosulfidic chemistry

(chemistry ↔ geological and planetary aspects)

Unselctive Chemistry

(e.g.formose reaction

in primordial soup)

(assumption of atmosphere)

The prebiotic cyanosulfidic chemistry - Assumptions

- Emergence of life is linked to planetary conditions
- Vestiges of prebiotic chemistry are present
- Panspermia is not taken into account
- There are key building blocks wich then assembly into higher order structures

The prebiotic cyanosulfidic chemistry - Assumptions

Preferred feedstock: Hydrogen cyanide (HCN)

The prebiotic cyanosulfidic chemistry - HCN

 HCN (and Hydrogen sulfide) produces sugars, amino acids, ribonucleotides, lipids

The prebiotic cyanosulfidic chemistry - HCN HCN (copper catalysed) produces amino acids,

ribonucleotides

- Assumption: Atmosphere containing C, H, O and N
- Energy input can produce CO, NO•, CN•
- By cooling, CN• needs a hydrogen atom \rightarrow HCN
- HCN must be transported to the surface and concentraded there

- H₂O-Lakes with Fe²⁺ convert gaseous HCN to ferrocyanide salts
- CaK₂[Fe(CN)₆] and MgNa₂[Fe(CN)₆] sink and mix with sediment bottom
- Lakes protect the salts from UV radiation
- Drying cycles can concentrate these salts

- Heating ferrocyanide salts (700°C):
 - $CaK_{2}[Fe(CN)_{6}] \rightarrow CaCN_{2}$ and KCN
 - $MgNa_2[Fe(CN)_6] \rightarrow Mg_3N_2$ and NaCN
- In solution with water: HCN, H₂CN₂, NH₃

The prebiotic cyanosulfidic chemistry - Reduction

- Making biological molecules, HCN reduction is needed
- Radiolytic hydration of water produces HO•
- Mid-range UV can effectively produce e⁻ by irrdiation of mutliple anions

The prebiotic cyanosulfidic chemistry - Reduction

- Mars: "frozen" early Earth
- Geologically "dead" absence of plate tectonics
- Lack of radioactive isotopes
- Not enough liquid iron \rightarrow weaker magnetic field
- Can't hold atmosphere against solar wind

Divergent boundary https://commons.wikimedia.org/wiki/File:Continental-continent al_constructive_plate_boundary.svg

Convergent boundary https://commons.wikimedia.org/wiki/File:Continental-continenta I_destructive_plate_boundary.svg

- Abundance of sedimentary rocks
- Chemical concentration from evaporation or shallow burial → authigenic minerals
- Deeper burial and conversion of sediment into rock → diagenetic minerals
- Thermal metamorphism

Science 02 Jun 2017: Vol. 356, Issue 6341, eaah6849 DOI: 10.1126/science.aah6849

D. D. Sasselov et al., Science Advances 05 Feb 2020: Vol. 6, no. 6, eaax3419 DOI: 10.1126/sciadv.aax3419

- The Curiosity Rover: launched in Nov. 2011, landed on Gale crater of Mars Aug. 2012
- Found sulfates, chlorides, clay minerals
- Iron, manganese, boron, phosphorous and nitrogen compounds

The Curiosity rover, http://photojournal.jpl.nasa.gov/catalog/PIA19920

- Heating mechanism is essential for cyanosulfidic synthesis
- Traces of heating mechanism → Metamorphic rocks found in Mars (CRISM, MRO and OMEGA)
- Signs of igneous events
- Shock heating (impacts)

- Evidences of lake environment on Mars found by Curiosity rover
- Neutrally to mildly acidic pH
- Low to high salinity
- C, H, O, S, N, P, Fe, Mn, B have been found

Planetary Conditions in General

- "Rocky planets" with bulk Si/Fe interior, up to $10M_{Earth}$
- Currently numerous exoplanets have been found (4,164 have been confirmed as of 04/06/2020, more than 1000 are terrestrial)
- Long-lived liquid H₂O
- C, N, S, P, Fe
- Mid-range UV
- Redox gradients, vents and volcanoes
- Stable climate

Atmosphere

- Metal-sillicate partitioning
- Photolysis of CH_4 , NH_3 and $H_2 \rightarrow H$ escapes and N_2 - CO_2 atmosphere is generated

Atmosphere

5M_{Earth}

D. D. Sasselov et al., Science Advances 05 Feb 2020: Vol. 6, no. 6, eaax3419 DOI: 10.1126/sciadv.aax3419

Hydrospheres

- "Habitable zone"
- Liquid water belt
- Pressure of atmosphere
- Question: did Mars' hydrosphere last long enough to allow prebiotic chemistry?

Hydrospheres

List of exoplanets in the conservative habitable zone [edit]

In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. Note that this does not ensure habitability, and that * represents an unconfirmed planet or planet candidate. Earth is included for comparison.^[10]

Object +	Star 🕈	Star type +	Mass (M _⊕) ◆	Radius (R _⊕) ◆	Flux (F _⊕) ◆	T _{eq} (K) ≎	Period (days) 🕈	Distance (ly) +	Ref ¢
Earth	Sun (Sol)	G2V	1.00	1.00	1.00	255	365.24	-	
Proxima Centauri b	Proxima Centauri	M6Ve	≥1.3	0.8 - 1.1 - 1.4	0.65	234	11.186	4.22	[11]
Gliese 667 Cc	Gliese 667 C	M3V	≥3.8	1.1 – 1.5 – 2.0	0.88	277	28.143 ± 0.029	23.62	[12][13]
Kepler-442b	Kepler-442	K?V	8.2 - 2.3 - 1.0	1.34	0.70	233	112.3053	1291.6	[13]
Kepler-452b	Kepler-452	G2V	19.8 – 4.7 – 1.9	1.50, 1.63	1.11	265 ⁺¹⁵ _13	384.8	1402	[13][14]
Wolf 1061c	Wolf 1061	M3V	≥ 4.3	1.1 – 1.6 – 2.0	1.36	275	17.9	13.8	[13]
Kepler-1229b	Kepler-1229	M?V	9.8 - 2.7 - 1.2	1.4	0.49	213	86.8	769	[13]
Kapteyn b	Kapteyn	sdM1	≥ 4.8	1.2 - 1.6 - 2.1	0.43	205	48.6	13	[13]
Kepler-62f	Kepler-62	K2V	10.2 - 2.8 - 1.2	1.41	0.39	244	267.291	1200	[13][15]
Kepler-186f	Kepler-186	M1V	4.7 - 1.5 - 0.6	1.17	0.29	188	129.9459	561	[13]
Luyten b	Luyten's Star	M3.5V	3.15 - 2.89 - 2.63	~1.35	1.06	206-293	18.650	12.36	[16]
TRAPPIST-1d	TRAPPIST-1	M8V	0.30	0.78	1.04	258	4.05	39	[17][18]
TRAPPIST-1e	TRAPPIST-1	M8V	0.77	0.91	0.67	230	6.1	39	[17][18]
TRAPPIST-1f	TRAPPIST-1	M8V	0.93	1.046	0.38	200	9.2	39	[17][18]
TRAPPIST-1g	TRAPPIST-1	M8V	1.15	1.15	0.26	182	12.4	39	[17][18]
LHS 1140 b	LHS 1140	M4.5V	6.6	1.43	0.46	230	25	40	[19]
Kepler-1638b	Kepler-1638	G4V	45 – 6 – 1	1.60	1.17	304	259.365	2491.83	[20]
Teegarden c*	Teegarden's Star	M7V	1.11		0.37		11.4	12.58	[21]

https://en.wikipedia.org/wiki/List_of_potentially_habitable_exoplanets

UV irradiation

- High-energy UV \rightarrow attenuated
- Mid-range UV \rightarrow synthetic photochemistry
- Source of energy and selection agent
- Prevents formation of isomers and tautomers
- Can be blocked by H_2S and SO_2

Conclusions & Outlook

- Open questions \rightarrow to be answered by Mars 2020 rover
- Other possibilities of prebiotic chemistry
- Confirmation of N₂-CO₂ atmosphere in exoplanets
- History of H₂O acquisition and distribution
- The explanation in prebiotic chemistry already fits observation

References

• The origin of life as a planetary phenomenon

Dimitar D. Sasselov, John P. Grotzinger and John D. Sutherland

Common origins of RNA, protein and lipid

precursors in a cyanosulfidic protometabolism

Bhavesh H. Patel, Claudia Percivalle, Dougal J. Ritson, Colm D. Duffy and John D. Sutherland*

Photochemical reductive homologation of

hydrogen cyanide using sulfite and ferrocyanide

Jianfeng Xu, Dougal J. Ritson, Sukrit Ranjan, Zoe R. Todd, Dimitar D. Sasselov and John D. Sutherland

References

Redox stratification of an Ancient Lake in Gale
 Crater, Mars

J. A. Hurowitz et al., Science 356, eaah6849 (2017)

 Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view

J. Carter et al., J. Geophys. Res. 118, 831-858 (2013)