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The RNA world hypothesis proposes the emergence of self-
replicating and catalytic RNA that later gives rise to proteins 
and DNA (Fig. 1b, middle)1,2. Models posit the existence of 

a genetic polymer—whether RNA or its precursor—with a homo-
geneous backbone that transitions to its homogeneous backbone 
successor1,3–10. This transition is proposed to occur despite the diffi-
culties2,11–14 associated with the generation of the pristine oligomers 
using prebiotic chemistry15,16, and the challenge of replacing one 
genetic polymer with another2,17–21 in the absence of any sophisti-
cated discrimination mechanism during the transition in a prebio-
logical world13,22. However, there is a growing realization23–25 that 
most prebiotic pathways26,27 would lead to nucleic acid oligomers 
that consist of mixed backbone units14,17,19,28. In this context, RNA 
that contains a mixture of 2′,5′ and 3′,5′ linkages18,19,29, and chimeric 
RNA–DNA systems17,21, have been investigated (and it was shown 
that these types of backbone heterogeneity compromise aptamer 
function17–19), and we have shown that RNA–DNA chimeras con-
sistently form weaker duplexes14. Although chimeric RNA–DNA 
genomes are known in extant biology30 and such chimeras contain-
ing non-heritable backbone heterogeneity were postulated to be 
useful in the emergence of functional nucleic acids17,19, questions 
were raised about their role as enhanced templates for replication17,31 
to generate polymers with homogeneous backbones14. For pre-RNA 
to RNA transitions, Orgel has speculated two extreme possibilities 
using threose nucleic acid (TNA) (Fig. 1a)32 as an example: (1) an  
all-TNA organism that converts to an all-RNA organism and  
(2) a gradual replacement of TNA residues by RNA residues within 
the oligomeric system33. The second scenario leads to a continu-
ous pathway from TNA to RNA via chimeric sequences33. We pro-
posed a heterogeneity-to-homogeneity scenario34 for the emergence 
of RNA and DNA13,14, and argued that, based on certain criteria 
such as the stability and functional advantages inherent to homo-
geneous backbone polymers, their emergence would be a natural 
consequence even when starting from a mixture of its constituent 
building blocks (Fig. 1b, top and bottom)13. A demonstration that 
chimeric TNA–RNA (TRNA) sequences (Fig. 1b, top) or RNA–DNA  

(RDNA) sequences (Fig. 1b, bottom) can enable the non-enzymatic 
emergence of a homogeneous backbone oligonucleotide (RNA or 
DNA) starting from mixtures of chimeric sequences would provide 
support to the heterogeneity-to-homogeneity scenario13.

Results
TRNA chimeric sequences function as templates for RNA 
ligands. We selected TNA32—a Watson–Crick base-pairing system 
able to cross pair with RNA32,35—as a model pre-RNA polymer13, 
based on the prebiotic availability of the sugars27,36–39 (Fig. 1a). 
We investigated TRNA chimeric sequences that exhibited pecu-
liar base-pairing properties even though TNA formed strong and  
stable duplexes with complementary RNA strands (Supplementary 
Tables 1 and 2)32. First, in general, TRNA formed weaker duplexes 
compared to the unmodified strands. Second, based on which sugar 
(threose or ribose) unit contained a purine (A) or pyrimidine (T), 
TRNA demonstrated unpredictable duplex stabilities (Fig. 2a). 
Unexpectedly, TRNA non-self-complementary strands that showed 
a weak affinity for each other (Fig. 2a, entry 7) formed stronger 
duplexes with the corresponding complementary RNA (or TNA) 
sequences (Fig. 2a, entries 6 and 8), a behaviour that was general  
for sequences that contained all four nucleobases (Supplementary 
Table 3 and Supplementary Figs. 7–13).

The preferential association of chimeric TRNA sequences with 
homogeneous RNA (or TNA) sequences (Fig. 2a, entries 6 and 8) 
implied that chimeric sequences could act selectively as templates 
for the non-enzymatic ligation of homogeneous sugar backbone 
ligands, and thereby facilitate the emergence of a homogeneous 
backbone oligomer (for example, RNA) starting from a mixture of 
oligonucleotides. To test this proof-of-concept, we employed the 
widely used water soluble 1-ethyl-3-(3-dimethylaminopropyl)car-
bodiimide (EDC)-mediated ligation conditions40 for homogeneous 
RNA ligands templated by TRNA chimeric and RNA templates, and 
compared it with ligation of the chimeric TRNA ligands (Fig. 2b). 
The 3′-NH2-modified TNA ligand41 and 3′-NH2-deoxynucleotide 
(TNH2

I
)-terminated RNA ligand42 were used to conduct the ligation  
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reaction within a reasonable time frame, as the corresponding  
TNA-3′-OH and RNA-3′-OH residues react very slowly (Supple
mentary Figs. 14–17). The single phosphoramidate linkage was 
shown to have no special effect on the duplex stability (Supplementary 
Fig. 12). The reactions were monitored by anion-exchange chro-
matography and the products were confirmed by comparison 
with standards and matrix-assisted laser desorption/ionization–
time-of-flight (MALDI–TOF) mass spectrometry (Supplementary  
Figs. 18–28). As expected from a previous study41, the efficiency 
and the rate of ligation reactions paralleled the affinity (and ther-
mal stability) of the templates for the ligands in the order: RNA  
template with TNA ligands ≈ RNA template with RNA ligands ≥  
TRNA chimeric template with RNA ligands >> RNA template with  
TRNA chimeric ligands >>>> TRNA chimeric template with TRNA  
chimeric ligands (Supplementary Figs. 18–23). Control reactions  
that lack the template(s) showed no product formation (Supple
mentary Figs. 25–28). We then examined the ligation behaviour of 
the mixture of all four ligands in the presence of the chimeric TRNA 
template (Fig. 2c) and observed, by anion-exchange chromatography, 
only the formation and growth of the RNA product from homo
geneous RNA ligands, with no discernible chimeric TRNA prod-
uct from heterogeneous TRNA ligands (Fig. 2d and Supplementary  
Fig. 24). However, MALDI–TOF analysis of the reaction of chime-
ric TRNA ligands with the chimeric TRNA template at 24 hours  
did show traces of the chimeric TRNA product (Supplementary  
Fig. 18). We did not investigate intensively a parallel scenario for  
the emergence of homogeneous TNA sequences43 (due to the  
investment in synthesizing the various TNA 3′-NH2-phosphor
amidites), although we expect a similar propensity32 based on the 
observation that homogeneous TNA ligands were also preferentially 
ligated by the chimeric TRNA template (Supplementary Fig. 20).

RDNA chimeric templates ligate complementary RNA and DNA 
ligands. The above results inspired us to investigate mixed DNA 
and RNA chimeric sequences based on (1) our previous studies of 
RDNA chimeras14 and the plausible coexistence and co-evolution 
of RNA and DNA in prebiotic scenarios17,21,28,44 and (2) the ease of  
commercial and synthetic availability of diverse RDNA chimeric  
sequences. We studied a series of RDNA chimeric sequences 
(Supplementary Table 4), which, again, formed stronger duplexes 
with complementary homogeneous RNA over the correspond-
ing complementary chimeric RDNA (Supplementary Table 5 and 
Supplementary Figs. 29–35). To test whether the preferential asso-
ciation of RDNA with RNA would also translate to the selective liga-
tion of RNA ligands (as seen in the TRNA system), we investigated 
the ligation behaviour of a hexadecamer chimeric RDNA template 
(CT2 in Fig. 3a) with RNA and RDNA ligands that contained 3′-NH2 
deoxynucleotide units. The ligation of RNA sequences (RL3 and RL4) 
on the chimeric RDNA template (CT2) was not only faster than the 
corresponding ligation of the chimeric RDNA ligands (CL3 and CL4 
on CT2 (Fig. 3b)), but was almost equal to the efficiency of RNA 
ligands RL3 and RL4 (or chimeric CL3 and CL4 ligands (Supplementary 
Fig. 39)) on an RNA template, RT2 (Supplementary Figs. 36–46).

The duplex formation in octameric homogeneous and chimeric 
sequences that contain all five canonical nucleosides again showed 
a preferential association of the homogeneous backbone sequences 
with complementary chimeric templates (Supplementary Table 5).  
Based on this, we investigated the ligation reaction mediated by the 
chimeric template CT4 with RNA and the chimeric ligands shown 
in Fig. 3c. The results revealed a temperature-dependent ligation 
behaviour that was not observed in the hexadecameric AU system  
(Supplementary Figs. 50–52). Although at lower temperatures 
(4 °C) there was little difference between the rate of ligation 
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Fig. 1 | The prebiotic clutter generated heterogeneity-to-homogeneity scenario versus the biology-inspired model of replacing one homogeneous 
genetic system with its homogeneous genetic successor. a, Constitutional formula representation of the three oligonucleotide building blocks  
investigated in this study. b, Three possible scenarios for the emergence of RNA and DNA from prebiotic chemistry. Middle: the classical RNA world 
concept in which the formation of a pristine and homogeneous RNA (or pre-RNA) leads to its homogeneous backbone successor DNA (or RNA). Top: a 
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and DNA simultaneously.
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between the two systems, the rate of ligation of chimeric ligands 
and the amounts of products formed at higher temperatures (10 and 
16 °C) differed considerably with preference for the ligation product 
from homogeneous ligands on the chimeric template (Fig. 3d and 
Supplementary Fig. 52). This indicates that temperature could also 
control and modulate the overall dynamics and distribution of the 
end-products.

The trend of preferential association correlating with the ligation 
capacity of CT2 also extended to DNA ligands (DL1, DL2), in place of 
RNA ligands, which gives rise to the homogeneous DNA product 
DP1 (Fig. 3b), and was valid even when starting from a pool of mixed 
RL3+RL4+CL3+CL4 ligands or DL1+DL2+CL3+CL4 ligands (Fig. 3b  
and Supplementary Figs. 47–49). When all the ligands (RL3, RL4, 
DL1, DL2, CL3 and CL4) were added to the chimeric RDNA template 
CT2 in a single pot, three major ligation products, RP2 (38%), DP1 
(20%) and an RNA–DNA cross-ligation product (RDP1, 75%) were 
formed at 24 hours; no chimeric product from CL3+CL4 was detected 
(Supplementary Figs. 53 and 54). The nature of the cross-ligation 
product was confirmed with appropriate control experiments and 
shown to be the result of DL1–RL4 ligation (Supplementary Figs.  
55–59). Replacing the chimeric template with an RNA template, under 
otherwise identical conditions, gave RP2 (65%), DP1 (12%) and 62% 
of RDP1 and RDP2 (RL3–DL2), which indicates that the RNA template 
also gave rise to significant cross-ligation products (Supplementary 
Figs. 60 and 61). Changing the ratios of the RNA ligands (RL3+RL4) 
to the DNA ligands (DL1+DL2) affected the product distribution 

(Supplementary Fig. 59), which implies that the generation of  
chimeric oligomers (along with homogeneous backbone oligomeric 
products) has to be reckoned with; these chimeric oligomer products  
should, in turn, help in the formation of homogeneous RNA and 
DNA ligation products. Although this hypothesis is reinforced by 
the results in Fig. 3, it was demonstrated to be so by isolating RDP1 
and using it as a template with RNA ligands to produce RP3 effi-
ciently in a 108% yield (Supplementary Fig. 62). The above results 
show that from a mixed system with two different oligonucleotides 
(for example, RDNA) there is, indeed, the possibility of the simul-
taneous emergence of the two respective homogeneous nucleotide 
polymers (for example, RNA and DNA).

RDNA chimeric templates are better in overcoming template-
product inhibition. The above observations suggest that chimeric 
templates could provide a solution to the problem of product inhibi-
tion (Fig. 4a), in which the continuous production of the product is 
curtailed due to the strong association of the initially formed tem-
plate–product complex45–48. For instance, RNA ligands RL3 and RL4 
in the presence of the RP2–RP3 RNA duplex under EDC-activation 
conditions showed no production of RP2, even after 24 hours, indica-
tive of a classic product inhibition behaviour; but the addition of 
the chimeric template CT2 led to the formation of more RP2 within a 
matter of a few hours (Supplementary Figs. 67 and 68). As outlined 
in Fig. 4b, if there was the adventitious presence and/or formation of 
a complementary RNA partner (RP3, from its corresponding ligands 
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RL5 and RL6) in the mixture that contained the chimeric duplex  
(RP2–CT2), it would induce the formation of the stronger RNA 
(RP2–RP3) duplex. This should release the original chimeric RDNA 
template for another round of ligation of RL3 and RL4 to form more 
RP2 and result in a continuous accumulation of the duplex RP2–RP3, 
with the chimeric template CT2 taking the role of a catalyst that pro-
duces more RP2 from its respective ligands. To test this scenario, we 
first conducted a stepwise addition of RNA ligands RL3 and RL4 to 
the RDNA chimeric template CT2, which led to the formation of 
the product RP2 (97% in 20 hours (Fig. 4c)). Then, ligands RL5 and 
RL6 were added to this mixture. The formation of the second liga-
tion product RP3 (21% in 1 h increasing to 77% in 24 h (Fig. 4c)), 
indicated that the in  situ generated first ligation product RP2 was, 
indeed, acting as a template (Supplementary Figs. 64–66). More 
encouragingly, with higher ligand ratios of RL3 and RL4, an increased 
amount of the first ligation product RP2 (251% with respect to CT2) 
and of the second ligation product RP3 (204%) was observed after 
24 hours (Fig. 4c, Supplementary Fig. 65). This indicates that the 
chimeric template CT2 was, indeed, being released to take part in a 
turnover, which in turn led to the formation of more RP2. Pertinent 
control experiments confirmed the need for all the components 
to be present for this system to operate; importantly, CT2 itself 
did not serve as a template to ligate RL5 and RL6 and did not pro-
duce RP3 (Supplementary Figs. 45 and 66). Encouraged by these 
results, we set up a one-pot experiment in which all the compo-
nents, CT2+RL3+RL4+RL5+RL6, were mixed from the beginning and 

observed the concomitant production of the two RNA ligation prod-
ucts RP2 and RP3 (as efficiently as the stepwise addition experiment) 
(Fig. 4c). The presence of the chimeric template CT2 in a mixed one-
pot system not only initiated the ligation process, but also acted as 
a turnover intermediary downstream, which potentially enables the 
continuous production of RP2 and RP3 by mitigating the inhibition 
by the template–product complex. This process was mainly driven 
by the preference of a thermodynamically stable homogeneous 
backbone duplex RP2–RP3. Control reactions for RL3+RL4 or RL5+RL6 
ligands without the CT2 template showed no observable background 
ligation reactions. However, when all four ligands (absent CT2) were 
mixed together, 33% RP2, 20% RP3 and 13% cross-ligation products 
(probably from RL3+RL6 and/or RL5+RL4) were formed, but more 
slowly at 24 h (Supplementary Fig. 70), as opposed to 259% of RP2 
and 191% of RP3 with no cross-ligation products in the presence of 
the chimeric template CT2 (Supplementary Fig. 69). The background 
ligation reactions were eliminated when ligand concentrations were 
lowered from 200 µM to 20 µM each; and only in the presence of 
10 µM chimeric template CT2 was the formation of RP2 (83%) and 
RP3 (18%) in 24 hours was observed (Supplementary Figs. 73–76). 
Furthermore, we tested whether the presence of the complementary 
ligands (CL3+CL4 (Fig. 3a)), which led to the CT2–CP2 duplex would 
prevent further copying of the first two RNA ligands RL4+RL3 and 
also impact the next round of copying when all four RNA ligands 
RL4+RL3+RL5+RL6 are present. In both cases, in 24 hours at 4 °C,  
corresponding RNA products formed in good yields: 92% of 
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RP2 (with 30% of CP2) for the first experiment and in the second  
scenario, 83% RP2 and 16% RP3, with no discernible peak for CP2 in 
the chromatogram trace (Supplementary Figs. 47 and 77).

To assess the efficiency of the chimeric template CT2 versus that 
of the corresponding homogeneous backbone RNA counterpart 
RT2, the all-in-one-pot reaction was repeated, but with the RNA 
template RT2 in place of CT2. In this case, as expected, the produc-
tion of RP2 at 48 hours was comparable (99% for RT2 versus 109% for 
CT2); however, RP3 formation dropped by almost half to 18% (for 
RT2) when compared to 30% (for CT2), which indicates that the tem-
plate–product inhibition by the stronger RT2–RP2 complex meant 
that less RP2 was available to ligate RL5+RL6 (Fig. 4d). The advantage 
of CT2 over RT2 was more apparent when the ratio of the ligands was 
changed to 5(RL3+RL4):2(RL5+RL6) with CT2 producing 178% of RP2 
and 77% of RP3 when compared to 119% of RP2 and 43% of RP3 with 

the RNA template RT2 (Fig. 4d). This strongly suggests that CT2 is 
better able to dissociate from the CT2–RP2 template–product com-
plex, whereas the RNA template RT2 is limited by the classic RT2–RP2 
template–product inhibition and is, therefore, unable to recycle to 
produce more RP2 and RP3. In fact, CT2 consistently outperformed RT2 
in the production of RP3 for all other combinations of ligand ratios 
(Fig. 4d and Supplementary Fig. 78), indicative of the beneficial role 
played by chimeric templates in moving towards the emergence of 
homogeneous backbone sequences. However, for this to be possi-
ble, this phenomenon must hold good for other strands in terms of 
length and sequence diversity. Given the limitations imposed by the 
EDC-ligation chemistries and analysis of the chimeric sequences 
involved, we set up a proof-of-principle experiment as in Fig. 4b, 
but with octameric AUGC that contained the chimeric template 
CT4 (Supplementary Fig. 79), as it also showed a preference for the 
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RDNA template CT2 (at 48 h) demonstrates the higher efficiency of CT2 in mediating the formation of RP3 by overcoming the template–product inhibition 
(Supplementary Figs. 63–78 give the EDC-ligation conditions). A, U = RNA; A, T = DNA. Lines in c are drawn as a guide to indicate the trend and are not 
mathematical curve fittings. Percentage yields were calculated with respect to the template CT2 or RT2. Experiments were run in triplicate and the error range 
was less than ±5%; error bars represent s.d.
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complementary homogeneous ligands over the chimeric counter-
parts, as seen in Fig. 3d. As expected, the chimeric template CT4 
was efficient in producing the homogeneous products RP4 and RP5 
(Supplementary Fig. 80), overcoming the template–product inhi-
bition even in the presence of all four ligands (RL7+RL8+RL9+RL10), 
which parallels the observations for the AU-based system. Thus, the 
ability of the chimeric template to give rise to homogeneous back-
bones (the heterogeneity-to-homogeneity paradigm) seems to be 
still operative in this RDNA chimeric system even when shortening 
the length of the template and expanding the sequence diversity.

We then examined the effect of stepwise dilution (as a selec-
tion pressure) on the efficiency of the templates in overcoming the 
template–product inhibition, asking the question—which of the 
templates, the chimeric RDNA or the homogeneous RNA would 
produce the ligation products more efficiently as the stepwise dilu-
tion was continued? Using the AU system outlined in Fig. 4a, we 
conducted a stepwise dilution experiment in parallel with templates 
CT2 and RT2 that contain the complementary RNA ligands (RL3, RL4, 
RL5 and RL6) in which a portion of the reaction mixture was removed 
and fresh ligands and EDC were added every 24 hours, such that the 
concentrations of the ligands remained constant, but the template 
concentration decreased with each dilution step (Supplementary 
Figs. 91–93). As seen from Fig. 5a, as the stepwise dilution was 
implemented at 24 hour intervals, the formation of RP2 and RP3 was 
observed in both cases; although there was a concomitant drop 
in the product concentration (by 2 µM) at each dilution step, the 
amount of RP2 and RP3 increased to a level greater than the previ-
ous value with the progress of time. The amount of the first liga-
tion product RP2 was almost the same between the chimeric (CT2) 
and homogeneous (RT2) template-containing vials over the first two 
steps (48 hours) of dilution, with CT2 performing slightly better than 
RT2 as the dilution steps were continued (72–96 hours (Fig. 5b)). 
However, there was a remarkable difference in the production of 
the second ligation product RP3 with increasing stepwise dilutions; 
the chimeric template CT2 outperformed the homogeneous template 
RT2 in producing RP3 by ~250% (Fig. 5c), even as the concentrations 
of the templates were decreasing with each step of dilution. A com-
parison of the chromatogram traces at 96 hours (Fig. 5d) shows the 
dramatic difference and highlights the ability of CT2 to be a supe-
rior template17 for the production of the homogeneous product 
RP3, which demonstrates the ability of the chimeric template CT2 to 
better by-pass the template–product inhibition and turnover even 
under dilute conditions when compared to RT2. Appropriate con-
trols without the template showed no product formation (Fig. 5d).

RDNA chimeric templates harbour the potential for cross-
catalytic self-replication. The promise of the turnover of RNA 
ligation (Fig. 4b) when coupled with the observation that RDNA 
(CP2) chimeric products can also be formed on the RNA template 
(Supplementary Fig. 39) suggested that the catalytic chimeric tem-
plate (CT2) could also be regenerated in the same reaction mixture if 
the corresponding chimeric ligands (CL7+CL8) are present (Fig. 6). 
If this is possible, then the regeneration of the catalytic template CT2 
could allow for a cross-catalytic cycle to be operative, which would 
be expected to lead to the amplification of the homogeneous RNA 
product RP2 (Fig. 6b). To test this possibility, we set up a one-pot 
EDC-ligation reaction with the RNA ligands RL3+RL4 along with 
chimeric ligands CL7+CL8 in the presence of the chimeric template 
CT2 (Fig. 6). We observed within 1–4 hours the formation of the 
expected product RP2 (90%), which could now act as the template 
for the chimeric ligands CL7+CL8. Indeed, by 24 hours, the formation 
of the dT-phosphoramide-linked equivalent of CT2 (CT2

NH, 16%) was 
clearly observed, and kept increasing with time to 36% in 48 hours 
and to 48% in 72 hours. In parallel, the amount of RP2 increased 
accordingly to 125% in 24 hours, to 148% in 48 hours and to 160% 
in 72 hours (Supplementary Fig. 94). This is well above the levels of 

RP2 produced in the ligation reaction mediated by CT2 in the pres-
ence of only RL4+RL3 and lacking the chimeric ligands (Fig. 6c), in 
which the amount of RP2 levelled at around 108% by 72 hours. Thus, 
the chimeric template mediated ligation process shows potential for 
cross-catalytic self-replicating systems that can result in amplifica-
tion of the downstream product. Further systematic investigations 
are ongoing to understand the scope and limitation of this system. 
In all the experiments described in this work no discernible degra-
dation of the homogeneous or chimeric templates or products was 
observed (confirmed by comparison with an external standard of 
oligonucleotide dT24 added to the samples just before analysis).

Discussion
The results described in this work confirm experimentally the ben-
eficial roles of chimeric sequences (backbone heterogeneity) in 
nucleic acid replication, which augments the evolution of function-
ality in mosaic nucleic acids17; they also suggest that the nucleobase 
sequence information encoded in heterogeneous backbones can, 
indeed, be heritable for chemical evolution (similar to homoge-
neous backbone systems). In these chimeric systems, there is the 
added advantage of (1) by-passing the template–product inhibition 
problem commonly encountered in the non-enzymatic replication 
of nucleic acids (unlike the homogeneous backbone systems) and 
(2) moving towards the (cross-catalytic) self-replication of the chi-
meric templates, which eventually are able to assist in the transi-
tion from heterogeneity to homogeneity in nucleic acid systems13,14. 
Whether the preference for homogeneous backbone ligands by  
chimeric templates (dictated by the thermodynamic stability of 
duplex formation) could be a general phenomenon for oligonucle-
otides composed of other different sugar backbones and/or nucleo-
bases that are able to cross pair needs further examples (such as 
chimeras of 2′,5′-RNA with 3′,5′-RNA)19,49,50 to validate its scope 
and limitations.

For the work described here, however, there are some issues still 
to be addressed: first, the use of EDC-mediated ligation combined 
with 3′-NH2-modified deoxynucleotide in this proof-of-principle 
study is not considered to be a plausibly prebiotic. To this end, we 
are exploring the use of other prebiotically plausible phosphoryla-
tion activation combined with oligomerization and ligation/recom-
bination chemistries that may be compatible with the replication 
conditions51–54. We briefly explored the use of enzymes (T4 DNA 
ligase and T4 RNA ligase 2) with canonical RNA, DNA and RDNA 
chimeric sequences to check if ligases could be used to overcome 
the limitations of (1) the side reactions with chemical (EDC) activa-
tion55 and (2) the need to synthesize sequences with the 3′-deoxy-
NH2 modification—so that we may be able to push towards many 
rounds of replication and sequence analysis within a shorter time 
span—but with limited success (Supplementary Figs. 95–103). 
We are exploring other ligases to expand the sequence space and  
length parameters to overcome the restrictions imposed by the EDC 
chemical ligation methods55,56.

Second, longer homogeneous products formed in the scenario 
described above are unlikely to work as continuous templates and 
may not provide the solution when moving towards a sustained 
replication of longer homogeneous strands that rely on thermody-
namic-driven effects alone. One possible solution (alluded to in this 
work) is that chimeric templates can facilitate indirect replication by 
catalysing the accumulation of homogeneous strands. The product 
homogenous strands can act as information storage, but cannot be 
directly replicated. Therefore, other mechanisms need to be invoked 
to allow the transfer of information stored in the homogeneous 
strands56. One straightforward pathway consistent with the above 
heterogeneity-to-homogeneity scenario is for the homogeneous 
RNA strands to give rise to functional ribozymes (ligase or poly-
merase) with the capability to take over the replication the homoge-
neous strands57. Other pathways could involve the beneficial effects 
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provided by different classes of molecules not considered in this 
study. For example, two other components, primordial (depsi)pep-
tides58 and protocells59, should be invoked, as they would have been 
an important part of any prebiotic scenario; they are as elementary 
as, if not more so than, the nucleotide building blocks53,60. Including 
them would be the next logical step to test the idea as to whether 
they could have not only aided in the transition from heterogeneity 
to homogeneity34, but also play a role in enabling the replication 
of information stored in the longer homogeneous RNA and DNA 
strands by overcoming the slower kinetics of strand exchange in the 
replication of homogeneous RNA and DNA strands as the strand 
lengths increase61,62.

Finally, in a prebiotic context, the possibility of oligomerization  
on chimeric templates starting with monomeric building blocks has 
to be considered alongside the ligation chemistry demonstrated in 

this study8. In our work, we were influenced by the duplex stabilities 
and reasoned that (1) the selectivity expressed at the ligand–template 
level may not translate to the level of weaker monomer–template 
associations and (2), based on earlier studies8,63, the oligomeriza-
tion of monomers would be biased towards G- and C-containing 
sequences (due to their stronger association) over A and U residues. 
Also, as argued by others64,65, the presence of dimers and trimers 
along with monomers in a prebiotic clutter may lead to the selective 
incorporation of the higher-order oligomers (dimers and trimers) 
over the monomers and, therefore, the ligation process may have  
an advantage over the oligomerization process. It is necessary to  
test the limits of oligomerization with monomers in a chimeric  
scenario to observe what the preference is, both in terms of  
the effects of the sugar and base residue (based on the nearest-
neighbouring nucleotide)49,50.
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The results reported in this study have twofold implications 
for the emergence of homogeneous backbone nucleic acids. First, 
starting from a mixture of binary chimeric systems, for example, 
RDNA (a possibility that is strengthened by the recent report44 of 
Sutherland and co-workers on the plausibly prebiotic conversion of 
RNA nucleotides into DNA nucleos(t)ides), there is the potential 
for the simultaneous emergence of the two respective homogeneous 
polymeric and communicating informational systems (RNA and 
DNA). This is opposed to the often-suggested sequential model 
with RNA as the forerunner and DNA as the successor. The suc-
cessive replication cycles42,66,67 are expected to lead, simultaneously, 
to the two respective strands that contain the homogeneous sugar 
backbone (RNA and DNA), as indicated by the results in Figs. 3–6. 
Therefore, if RNA and DNA could have appeared together, there 
is no need for a genetic takeover by the new informational system 
(DNA) from an older system (RNA), a suggestion that has been 
made implicitly and explicitly by others14,17,23–25,28,68,69, as there is nei-
ther a predecessor nor a successor in this scenario. This is also true 
for the supposed pre-RNA to RNA transition33; for example, there 
is no need for RNA to be the descendent of TNA, when TRNA can 
simultaneously give rise to TNA and RNA. Second, the generality 
of this phenomenon—exemplified by RDNA and TRNA chimera 
systems—lends experimental credence to a point that is implied in 
Fig. 1, and one that has been discussed before13,21,28; namely, a clean 

and directed prebiotic synthesis of a nucleotide building block of 
a particular oligonucleotide (for example, TNA, RNA or DNA) is 
not an absolute requisite for a homogeneous backbone nucleic acid 
like RNA to emerge. In other words, as is suggested in Fig. 1, the 
appearance of a system with homogeneous nucleotide backbone 
repeat units can be achieved at the emergent level of a replicating 
polymer34. Therefore, a mixture of diverse nucleotides can, via the 
formation of mixtures of oligonucleotides and the ensuing emergent 
property of template-mediated ligation, tend towards homogeneous 
nucleotide backbone systems13. This process can include alternative 
linker units and alternative nucleobases10,17,19,70, and chirality of the 
building blocks71. This means that the appearance of homogeneous 
backbone homochiral polymers with a set of uniform building 
blocks from a prebiotic mixture is a natural outcome of chemical 
evolution14, without the need to invoke the predecessor–successor 
models of extant biology34,68,72.

Data availability
Full experimental details and data are provided in the Supplementary 
Information. The raw data that support the findings of this study are 
available from the corresponding author upon reasonable request.
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