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Problem 1 (counts as 3 problems) Kondo model

Consider the Kondo Hamiltonian,

ĤK =

ˆ
d3k

∑
σ

ε(k)ĉ†k,σ ĉk,σ + JŜ · Ŝe(0), (1)

with the band electron spin at the location r = 0 of the Kondo spin Ŝ:

Ŝe(0) = (2π)−3

ˆ
d3kd3k′

∑
α,β

ĉ†k,α
1

2
σα,β ĉk′,β (2)

(1.a) By an expansion into plane waves, show that the Kondo problem reduces to a 1D Hamiltonian
Ĥ1D

K which decouples from the rest of the system:

ĤK = Ĥ1D
K + Ĥ′K. (3)

Derive an expression for Ĥ′K and show that

Ĥ1D
K =

ˆ ΛUV

0

dk
∑
σ

ε(k) ŝ†k,σŝk,σ + JŜ · Ŝe(0), (4)

where:

Ŝe(0) =
∑
α,β

ŝ†α(0)
1

2
σα,β ŝβ(0), ŝσ(0) =

1√
2π

ˆ ΛUV

0

dk ŝk,σ. (5)

(1.b) Linearizing the band Hamiltonian Eq. (4) around the Fermi energy, ε(k) ' ~kvF, yields:

Ĥ1D
K '

ˆ ∞
−∞

dk
∑
σ

~vFk ŝ
†
k,σŝk,σ + JŜ · Ŝe(0). (6)

This Hamiltonian can be bosonized by defining spin- and charge- density operators,

ρ̂(k) =
∑
σ=±

ˆ ∞
−∞

dp ŝ†p+k,σŝp,σ, ρ̂(−k) = ρ̂†(k) (7)

σ̂(k) =
∑
σ=±

ˆ ∞
−∞

dp σ ŝ†p+k,σŝp,σ, σ̂(−k) = σ̂†(k). (8)

Calculate the commutation relations of ρ̂ and σ̂, assuming a band with all states at p < 0
occupied. Show that they define bosonic operators, ρ̂ ∝ b̂−k and σ̂(k) ∝ â−k. For the new
bosonic operators we will show in the tutorial that:

Ĥ1D
K = ~vF

ˆ ∞
0

dk k
(
â†kâk + b̂†kb̂k

)
+ JŜ · Ŝe(0). (9)
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(1.c) The Kondo interaction can be written as:

JŜ · Ŝe(0) =
Jz
2
Ŝz
∑
σ=±

σ ŝ†σ(0)ŝσ(0) + J⊥

[
Ŝ+ŝ†−(0)ŝ+(0) + h.c.

]
, (10)

with Jz = J⊥ = J . Express the Jz-term by the new bosonic operators âk and b̂k. As usual,
Ŝ± = Ŝx ± iŜy.

(1.d) Show that the operators

ψ̂σ(x) = (2πa)−1/2 exp
[
ĵσ(x)

]
, with (11)

ĵσ(x) =

ˆ ∞
0

dk e−ak/2 Ck

(
b̂k + σâk

)
eiσkx − h.c. (12)

and an appropriately defined normalization constant Ck = α/
√
k (to be determined), obey

fermionic anti-commutation relations for given spin σ:

{ψ̂σ(x), ψ̂†σ(x′)} = δ(x− x′). (13)

In the above expression, a defines a short-distance cut-off which may be sent to a→ 0 in
the end.

Hint: Show first that [ĵσ(x), ĵσ′(y)] = −iπσ sgn(x− y) δσ,σ′ .

Note: To obtain full fermionic anti-commutations, also between different spins σ 6= σ′, one
needs to include additional zero-modes in the representation (11). For simplicity we discard
them now.

(1.e) You may now identify the fermionic operators ŝσ(0) ≡ ψ̂σ(0). Using this relation, express
the J⊥-part of the Kondo interaction in Eq. (10) by the bosonic fields âk and b̂k. Show that
the interaction decouples from the b̂k operators – i.e. only the spin channel described by âk
couples to the Kondo impurity.

Hint: The result is:

J⊥Ŝ
+ŝ†−(0)ŝ+(0) =

J⊥
2πa

Ŝ+eξ̂, ξ̂ =

ˆ ∞
0

dk e−ak/22Ck

(
âk − â†k

)
. (14)

(1.f) Show that the resulting Kondo Hamiltonian Ĥa
K for the interacting modes âk is equivalent to

a spin-boson model, by applying the unitary transformation: Û = exp[Ŝz ξ̂], i.e. show that:

Û †Ĥa
KÛ = spin-boson model. (15)

Derive the resulting spin-boson Hamiltonian explicitly.
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Problem 2 Effective polaron mass:

Consider the 3D Fröhlich Hamiltonian:

ĤF =
p̂2

2M
+

ˆ
d3k ωkâ

†
kâk +

ˆ
d3k Vke

ik·x̂
(
âk + â†−k

)
, (16)

with Vk ∝ α1/2.

(2.a) Use Rayleigh-Schrödinger perturbation theory to first order in α and start from the unperturbed
eigenstates |q〉|nk = 0〉 to derive their renormalized energy:

E0(q) =
q2

2M
−
ˆ
d3k

V 2
k

ωk +
k2

2M
− k·q

M

. (17)

(2.b) Use Eq. (17) to derive a formal expression for the effective polaron mass M∗, to first order
in α. Assume that Vk = Vk and ωk = ωk are rotationally invariant and simplify the resulting
integrals as far as possible.
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