

WWW. physik.uni-muenchen.de/lehre/vorlesungen/sose_20/FewBodyQuantum

Problem Set 2:

Handout: Fri, May 08, 2020; Solutions: Fri, May 22, 2020

Problem 1 Regularized contact interactions

Solve the Lippmann-Schwinger equation to all orders for the contact interaction $V(\boldsymbol{r})=g \delta^{(3)}(\boldsymbol{r})$.
(1.a) Show the following relation between the UV momentum cut-off Λ_{0}, the interaction strength g and the resulting scattering length a :

$$
\begin{equation*}
\frac{1}{g}=\frac{m_{\mathrm{red}}}{2 \pi \hbar^{2}} \frac{1}{a}-\int^{\Lambda_{0}} d^{3} \boldsymbol{k}(2 \pi)^{-3} \frac{m_{\mathrm{red}}}{\hbar^{2} k^{2}} \tag{1}
\end{equation*}
$$

(1.b) Derive the expression for the effective range $r_{\text {eff }}$, as a function of the UV momentum cut-off Λ_{0} :

$$
\begin{equation*}
r_{\mathrm{eff}}=\frac{\pi}{4} \Lambda_{0}^{-1} . \tag{2}
\end{equation*}
$$

Hint: For $\epsilon \rightarrow 0^{-}$it holds: $\int_{0}^{1} d x\left[1-(k / x)^{2}+i \epsilon\right]^{-1}=1+i \frac{\pi}{2} k-k^{2}+\mathcal{O}\left(k^{3}\right)$.
(1.c) Now consider the 1D Lippmann-Schwinger equation, for 1D contact interactions $V(x)=$ $g_{1 \mathrm{D}} \delta(x)$. Derive the relation between $g_{1 \mathrm{D}}$ and the scattering length a (defined in 1D by $f_{k} \rightarrow-1 /[1+i k a]$ for $k \rightarrow 0$; note that $\left.f(k)=-T_{E}(k) i \pi 2 m_{\text {red }} /\left(|k| \hbar^{2}\right)\right)$ - is UV regularization required in this case?

Problem 2 General solution of Feshbach resonances
Here we treat the intermediate steps in the lecture's derivation of Feshbach resonances.
(2.a) Show that the formal solution of the Lippmann-Schwinger eq. $\hat{T}=\hat{V}+\hat{V} \hat{G}_{0} \hat{T}$ is given by

$$
\begin{equation*}
\hat{T}=\left(1-\hat{V} \hat{G}_{0}\right)^{-1} \hat{V} \tag{3}
\end{equation*}
$$

(2.b) Show that the solution (3) can also be written as:

$$
\begin{equation*}
\hat{T}=\hat{V}\left(1-\hat{G}_{0} \hat{V}\right)^{-1} \tag{4}
\end{equation*}
$$

(2.c) Consider the Feshbach T-matrix for the open channels \hat{T}_{0} from p. II-41 of the lecture notes. Use the result from (2.a) to show that:

$$
\begin{equation*}
\hat{T}_{0}=\left(E-\hat{\mathcal{H}}_{0}+i \epsilon\right)\left(E+i \epsilon-\hat{\mathcal{H}}_{0}-\hat{V}\right)^{-1} \hat{V} . \tag{5}
\end{equation*}
$$

(2.d) Use the identity $(\hat{A}-\hat{B})^{-1}=\hat{A}^{-1}\left[1+\hat{B}(\hat{A}-\hat{B})^{-1}\right]$ to write (noting $\hat{V}=\hat{V}_{0}+\hat{\mathcal{H}}_{00}^{\prime}$):

$$
\begin{equation*}
\left(E+i \epsilon-\hat{\mathcal{H}}_{0}-\hat{V}\right)^{-1}=\left(E+i \epsilon-\hat{\mathcal{H}}_{0}-\hat{V}_{0}\right)^{-1}\left[1+\hat{\mathcal{H}}_{00}^{\prime}\left(E+i \epsilon-\hat{\mathcal{H}}_{0}-\hat{V}\right)^{-1}\right] . \tag{6}
\end{equation*}
$$

(2.e) Using (6), and (3) for the open-channel-only T-matrix $\hat{T}_{0}^{(0)}$, show that (5) can be written:

$$
\begin{equation*}
\hat{T}_{0}=\hat{T}_{0}^{(0)}+\left(1-\hat{V}_{0} \hat{G}_{0}\right)^{-1} \hat{\mathcal{H}}_{00}^{\prime}\left(1-\hat{G}_{0} \hat{V}\right)^{-1} . \tag{7}
\end{equation*}
$$

Problem 3 The $1 / r^{2}$ potential
(3.a) Consider the following one-dimensional Schrödinger equation with a $1 / r^{2}$ potential,

$$
\begin{equation*}
\left(-\partial_{r}^{2}-\lambda r^{-2}\right) \psi_{1}(r)=\frac{2 m}{\hbar^{2}} E_{1} \psi_{1}(r) \tag{8}
\end{equation*}
$$

From a given solution of this equation, $\psi_{1}(r)$ with eigenenergy E_{1}, construct re-scaled solutions $\psi_{\alpha}(r)$ with eigenenergies $E_{\alpha} \neq E_{1}$ for $\alpha \in \mathbb{R}_{>0}$ (- use scale-invariance!).
(3.b) Now consider the regularized $1 / r^{2}$ potential, with $s_{0} \in \mathbb{R}$ and $r_{0} \in \mathbb{R}_{>0}$:

$$
V(r)=-\frac{\hbar^{2}}{2 m}\left(s_{0}^{2}+\frac{1}{4}\right) \times\left\{\begin{array}{cc}
-\infty & r<r_{0} \tag{9}\\
1 / r^{2} & r \geq r_{0}
\end{array}\right.
$$

As discussed in the lecture, its bound states are given by $\psi_{n}(r)=\sqrt{\kappa_{n} r} K_{i s_{0}}\left(\kappa_{n} r\right)$. Show in the scaling limit $r_{0} \rightarrow 0$ that the solutions satisfy

$$
\begin{equation*}
\kappa_{n} r_{0}=e^{-n \pi / s_{0}} 2 e^{-\gamma}\left[1+\mathcal{O}\left(s_{0}\right)\right], \quad n \in \mathbb{Z}_{>0} \tag{10}
\end{equation*}
$$

Hint: The modified Bessel functions of second kind can be expanded as follows,

$$
\begin{equation*}
K_{i s_{0}}(z) \approx-\sqrt{\frac{\pi}{s_{0} \sinh \left(\pi s_{0}\right)}} \times \sin \left[s_{0} \log (z / 2)-\arg \Gamma\left(1+i s_{0}\right)\right], \quad|z| \ll 1 \tag{11}
\end{equation*}
$$

Problem 4 Bound states in separable potentials
Consider a 2-body problem (reduced mass m_{r})

$$
\begin{equation*}
\left(-\hbar^{2} \frac{\partial_{r}^{2}}{2 m_{r}}+\hat{V}\right)|\psi\rangle=E|\psi\rangle \tag{12}
\end{equation*}
$$

with an interaction which is separable in the relative coordinate r, i.e.:

$$
\begin{equation*}
\hat{V}=-\lambda|g\rangle\langle g|, \quad \lambda \in \mathbb{R}_{>0} \tag{13}
\end{equation*}
$$

You may assume that $g(r)=\langle\boldsymbol{r} \mid g\rangle \in \mathbb{R}$ is real.
(4.a) Write Eq. (12) in momentum representation and show that the bound state solution with energy $E_{0}=-\hbar^{2} \kappa_{0}^{2} /\left(2 m_{r}\right)$ becomes

$$
\begin{equation*}
\psi(k)=C \frac{g(k)}{\kappa_{0}^{2}+k^{2}}, \quad g(k)=\langle\boldsymbol{k} \mid g\rangle . \tag{14}
\end{equation*}
$$

Derive an expression for the constant C.
(4.b) Show that the binding energy E_{0} is determined by the equation

$$
\begin{equation*}
\lambda \int d^{3} \boldsymbol{k} \frac{|g(k)|^{2}}{\kappa_{0}^{2}+k^{2}}=\frac{\hbar^{2}}{2 m_{r}} \tag{15}
\end{equation*}
$$

(4.c) Consider the choice (Yamaguchi potential):

$$
\begin{equation*}
g(k)=\left(k^{2}+\beta^{2}\right)^{-1} . \tag{16}
\end{equation*}
$$

Calculate $g(r)$ and show that (up to normalization):

$$
\begin{equation*}
\psi(r) \simeq\left(\frac{e^{-\kappa_{0} r}}{r}-\frac{e^{-\beta r}}{r}\right) \tag{17}
\end{equation*}
$$

(4.d) Solve the equation from (4.b) to find the bound state energy E_{0} for the Yamaguchi potential from (4.c).

