

Problem Set 1:

Handout: Thu, Apr. 23, 2020; Solutions: Fri, May 8, 2020

Problem 1 Quasiparticle residue: Bose polarons
(1.a) Consider the Bose polaron problem from the lecture: $\hat{\mathcal{H}}=\hat{\mathcal{H}}_{0}+\hat{\mathcal{H}}_{\text {int }}$:

$$
\begin{equation*}
\hat{\mathcal{H}}_{0}=\sum_{k} \omega_{\boldsymbol{k}} \hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}}+\sum_{\boldsymbol{k}} \epsilon_{\boldsymbol{k}} \hat{c}_{\boldsymbol{k}}^{\dagger} \hat{c}_{\boldsymbol{k}} ; \tag{1}
\end{equation*}
$$

Assume that the interaction Hamiltonian $\hat{\mathcal{H}}_{\text {int }}$ between the impurity $\left(\sum_{k} \hat{c}_{\boldsymbol{k}}^{\dagger} \hat{c}_{\boldsymbol{k}}=1\right)$ and the Bosons ($\hat{a}_{\boldsymbol{k}}$) is arbitrary but translationally invariant. Show for the interacting ground state $\left|\Psi_{\text {int }}^{0}\right\rangle \equiv\left|\psi\left(\boldsymbol{k}_{\text {min }}\right)\right\rangle$, in which $\boldsymbol{k}_{\min }$ is chosen to minimize $\langle\hat{\mathcal{H}}\rangle$, that

$$
\begin{equation*}
\left.Z_{0} \equiv Z_{0}\left(\boldsymbol{k}_{\min }\right)=\sum_{j}\left|\left\langle\Psi_{\mathrm{int}}^{0}\right| \hat{c}_{\boldsymbol{j}}^{\dagger}\right| \psi_{0}\right\rangle\left.\right|^{2} . \tag{2}
\end{equation*}
$$

- This expression is useful for calculating the quasiparticle weight Z numerically without full access to the total conserved momentum quantum number.

Problem 2 Quasiparticle residue: topological excitations
(2.a) Use the definition from the lecture of topological excitations (anyons) as well-defined lowenergy eigenstates of a (many-body) system, which cannot be created by any local operator. Argue that anyons are no 'quasiparticles' in the strict sense (i.e. the quasiparticle residue $Z=0$ vanishes) if we consider an infinite system.

Problem 3 Van-der-Waals interactions
(3.a) To describe van-der-Waals interactions between two Rydberg atoms in states $|n j p\rangle$, consider a simplified model with dipole-dipole couplings only to the following two states $|n-1 j s\rangle$ and $|n j s\rangle$ in each of the two atoms. Show that the interaction potential at large distances has the form

$$
\begin{equation*}
V_{\mathrm{Ry}}(r)=+\frac{C_{6}}{r^{6}}, \tag{3}
\end{equation*}
$$

with $C_{6}>0$. Derive an expression for C_{6} and show that $C_{6} \propto n^{11}$: you may use that the dipole-matrix elements scale as n^{2} (as in a hydrogen atom) and that $E_{n} \propto-n^{-2}$.

Problem 4 Scattering theory

(4.a) Using Eq. (2) on p. II-8 in the script and the the expansion of the plane-wave $e^{i k z}$ into Legendre polynomials, show that the scattering amplitude f can be expressed in terms of the phase shifts δ_{ℓ} as:

$$
\begin{equation*}
f(\theta)=\frac{1}{2 i k} \sum_{\ell=0}^{\infty}(2 \ell+1)\left(e^{i 2 \delta_{\ell}}-1\right) P_{\ell}(\cos \theta) \tag{4}
\end{equation*}
$$

(4.b) Use the result in (a) to show that $\delta_{0}=-k a$, where a is the scattering length.

