

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

www.physik.uni-muenchen.de/lehre/vorlesungen/sose_20/FewBodyQuantum

Problem Set 1:

Handout: Thu, Apr. 23, 2020; Solutions: Fri, May 8, 2020

Problem 1 Quasiparticle residue: Bose polarons

(1.a) Consider the Bose polaron problem from the lecture: $\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{H}}_{\rm int}$:

$$\hat{\mathcal{H}}_0 = \sum_{\boldsymbol{k}} \omega_{\boldsymbol{k}} \hat{a}^{\dagger}_{\boldsymbol{k}} \hat{a}_{\boldsymbol{k}} + \sum_{\boldsymbol{k}} \epsilon_{\boldsymbol{k}} \hat{c}^{\dagger}_{\boldsymbol{k}} \hat{c}_{\boldsymbol{k}}; \qquad (1)$$

Assume that the interaction Hamiltonian $\hat{\mathcal{H}}_{int}$ between the impurity $(\sum_{k} \hat{c}_{k}^{\dagger} \hat{c}_{k} = 1)$ and the Bosons (\hat{a}_{k}) is arbitrary but translationally invariant. Show for the interacting ground state $|\Psi_{int}^{0}\rangle \equiv |\psi(\mathbf{k}_{min})\rangle$, in which \mathbf{k}_{min} is chosen to minimize $\langle \hat{\mathcal{H}} \rangle$, that

$$Z_0 \equiv Z_0(\boldsymbol{k}_{\min}) = \sum_{\boldsymbol{j}} |\langle \Psi_{\text{int}}^0 | \hat{c}_{\boldsymbol{j}}^\dagger | \psi_0 \rangle|^2.$$
⁽²⁾

– This expression is useful for calculating the quasiparticle weight Z numerically without full access to the total conserved momentum quantum number.

Problem 2 Quasiparticle residue: topological excitations

(2.a) Use the definition from the lecture of topological excitations (anyons) as well-defined lowenergy eigenstates of a (many-body) system, which cannot be created by any local operator. Argue that anyons are no 'quasiparticles' in the strict sense (i.e. the quasiparticle residue Z = 0 vanishes) if we consider an infinite system.

Problem 3 Van-der-Waals interactions

(3.a) To describe van-der-Waals interactions between two Rydberg atoms in states $|njp\rangle$, consider a simplified model with dipole-dipole couplings only to the following two states $|n-1js\rangle$ and $|njs\rangle$ in each of the two atoms. Show that the interaction potential at large distances has the form

$$V_{\rm Ry}(r) = +\frac{C_6}{r^6},$$
 (3)

with $C_6 > 0$. Derive an expression for C_6 and show that $C_6 \propto n^{11}$: you may use that the dipole-matrix elements scale as n^2 (as in a hydrogen atom) and that $E_n \propto -n^{-2}$.

Problem 4 Scattering theory

(4.a) Using Eq. (2) on p. II-8 in the script and the the expansion of the plane-wave e^{ikz} into Legendre polynomials, show that the scattering amplitude f can be expressed in terms of the phase shifts δ_{ℓ} as:

$$f(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell+1)(e^{i2\delta_{\ell}} - 1)P_{\ell}(\cos\theta).$$
 (4)

(4.b) Use the result in (a) to show that $\delta_0 = -ka$, where a is the scattering length.