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Introduction to DSHARP



Comparison to other surveys
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Source: DSHARP 1., DOI:10.3847/2041-8213/aaf741 ESO/S. Renard, VLT 2010
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sample of 20 nearby protoplanetary disks
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DSHARP — Project goals

* Find and characterise substructures
(small-scale material concentrations)
In the spatial distributions of solid particles for a
sample of 20 nearby protoplanetary disks

* Deep, high resolution (35 mas, or 5 AU) survey
of the 240 GHz (1.25 mm) continuum emission

* Research and understanding of protoplanetary
disks and planet formation in general



Motivation:
Why was this survey done?



Motivation

* Different theories on planet formation



Motivation

* Different theories on planet formation

Early to contemporary
theories

e Core Accretion
* Streaming instability

 Pebble Accretion

Source: Nature, Rebecca Boyle, 2018



Motivation

Different theories on planet formation

Discrepancies between observations and expectations
(e.g. large planetesimals in very young protoplanetary
disks)

DIsks exhibit substructures previously not considered

Planet formation can be examined closer than ever
nefore




Substructures in Protoplanetary Discs
— Expectations

e Substructures may be in the form of:
- rings/gaps
- vortices
- spirals
* Look for signatures of particle traps and their substructures:
- azimuthal asymmetries
— additional rings
- warped geometries
- spiral arms (and planetesimals even)



Substructures in Protoplanetary Discs
— Conseqguences

> Clearing discrepancies between spatial distributions of
continuum and spectral line emissions

> There are already suggestions, that substructures are
guite common and thus significant factors in many disk
evolution and planetary formation processes



ALMA:
Atacama Large
Millimeter/submillimeter Array



Atacama Large Millimeter/submillimeter Array
(ALMA)
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Atacama Large Millimeter/submillimeter Array
(ALMA)

+ Atacama Large Millimeter Array (ALMA)
+ Atacama Pathfinder Experiment (APEX)

LAS CAMPANAS OBSERVATORY
+ Magellan Telescopes

CERRO TOLOLO
INTER-AMERICAN OBSERVATORY

+ Blanco 4-m Telescope
+ SOAR telescope

+ Large Synoptic Survey
Telescope (LSST)

+ European
Extremely Large

Telescope (ELT) . b\ p ANAL OBSERVATORY

+ Very Large Telescope
4+ Visible and Infrared Survey |
Telescope for Astronomy (VISTA)

+ VLT Survey Telescope 5
LA SILLA OBSERVATORY

+ New Technology Telescope (NTT) + Gemini Observatory
+ High Accuracy Radial velocity Planet
Searcher (HARPS)

Source: Symmetrymagazine.org, Sandbox Studio, Chicago with Pedro Rivas



Atacama Large Millimeter/submillimeter Array
(ALMA)

* International Project of ESO, AUI/NRAO and NAOJ

 Astronomical Interferometer



Atacama Large Millimeter/submillimeter Array
(ALMA)
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Source: LMU, Birnstiel, Formation and Evolution of Planets and Protoplanetary Disks lecture



Atacama Large Millimeter/submillimeter Array
(ALMA)
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Atacama Large Millimeter/submillimeter Array
(ALMA)
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Source: LMU, Birnstiel, Formation and Evolution of Planets and Protoplanetary Disks lecture



Atacama Large Millimeter/submillimeter Array
(ALMA)

International Project of ESO, AUI/NRAO and NAOJ
Astronomical Interferometer

66 Antennae, each 12 m in diameter

Operating at wavelengths of 0.32 to 3.6 mm

Maximum distance between antennas can vary from 150
metres to 16 kilometres

Operating in Far-Infrared to Millimeter regime, atmospheric

absorption of that light imposes an issue

— Located at high elevation (~5 km) and low humidity in the
Atacama desert



Angular resolution (arcsec)
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Magnetospheric
accretion

D Pure gas disk

0.03 AU

UV continuum,
H-recombination lines

Near-IR interferometry
- £

Mid-IR interferometry -

ALMA

Directimaging (HST or 8-meter ground-based)

u.1 - 1 Au

MNear-IR dust
continuum

Near-IR continuum
(origin unclear so far)
+ atomic lines (Br-y)

+ occasional molecular
lines (H,0, CO, OH)

Dust inner rim

Planet-forming
region

10 AU
Mid-IR: (Sub)millimeter:
dust continuum dust continuum 100 AU
+ molecular lines + molecular rot-lines
(H,0, CO,,...)

Source: Roser Juanola-Parramon, © Springer International Publishing Switzerland 2016



Survey Selection



Survey selection:
Going from over 200 to 20 targets

Main criteria:

e Access to wide range of spatial scales down to a FWHM
resolution of ~5 AU

- essential for identifying disk substructures in ALMA continuum
Images
- comparable to the (disk-averaged) pressure scale height, h,,

which at 5 AU has features resolved in the outer disk, and
detectable down to a radius r = 10 au (for sufficient contrast)

* Ability to detect a ~10% contrast out to Solar System size-
scales (r = 40 au).



Survey selection:
Going from over 200 to 20 targets

* More constrains given by:
- Stellar Class object selection — Class |l

- ALMA technical restrictions



Narrowing down targets:
Choosing Class Il YSO

* Why Class I1?

- SED in MIR/FIR
- Excess IR emission from disc

— Avoid confusion with envelope emission

* Excluding “transition” disks because they exhibit
substructures already



Spectral Energy Distribution (SED) in Planet
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Spectral Energy Distribution (SED)
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Survey selection:
Going from over 200 to 20 targets

* More constrains given by:
- Stellar Class object selection — Class |l
— ALMA technical restrictions

- Optimal window of 240 GHz, and mean age of 1 Myr

* Contrast criterion, taking fiducial numbers for orientation:

- For a target at 140 pc, with a synthesized beam FWHM of 35
mas, measure a 10% deviation from an otherwise smooth
brightness profile out at r = 40 au (~3 mas).

— Taking a cut on the 3 mas peak brightness



Survey selection:
Going from over 200 to 20 targets

* Final constraint set by ALMA time allowance (30 h)
and overhead cost

— 10 targets per configuration (mostly 2 regions, at 50
and 35 mas resolution respectively)



What did this work accomplish?
What can we see?



See Observations and Results
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Extras



Extras

* ALMA Cycle 4 Project
* Blas Reduction — and Implementation
* Astronomical Interferometry

 Comparison to other surveys:
Old and New

* Scale Height, FWHM



Atacama Large Millimeter/submillimeter Array
(ALMA)

ALMA Cycle 4 New Capabilities
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Source: annl16054a, 2016-17, ALMA (ESO/NAOJ/NRAO)



Bias — If it can't harm you, it'll help you

Bias favours targets with brighter continuum emissions
Preferential selection of larger disks
— Beneficial for achieving DSHARP goals!

Predictions for substructure sizes comparable to gas pressure
scale height (hy), which increases ~linearly with disk radius r

“For a fixed resolution it should be easier to identify and
characterise the larger substructures expected at larger disk radii.”

Typical host star mass of M.~0.3M,, continuum emission faint
(F,=10-15 mJy) and compact (R =10-20 AU) — DSHARP averages
are M.=0.8M,, R, =50 AU.

Source: DSHARP I., DOI:10.3847/2041-8213/aaf741



Astronomical Interferometry
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Astronomical Interferometry
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Comparison to other surveys

2018 HL Tauri 2014

Source: eso0l1436a, 2014, ALMA
Source: DSHARP |., DOI:10.3847/2041-8213/aaf741 (ESO/NAOJ/NRAO)



Declination (J2000)

ALMA SV data of HL Tau
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Dheg (J20040)

Aperture synthesis images of continuum
emission toward the young star DoAr 25

FLA (J2000) A (J2000) A (J2000) A (J2000)

Source: Pérez et al., 2015, DOI:10.1088/0004-637X/813/1/41



Sphere instrument at VLT, YSOs with discs

Source: ESO/H. Avenhaus et al./E. Sissa et al./DARTT-S and SHINE collaborations, 2018



Protoplanetary disk images in A = 1.3 mm
continuum.

100 AU

Source: Kwon et al., 2015, DOI:10.1088/0004-637X/808/1/102
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Newer Surveys: Continuum emission of the
multi-ring disk of HD 169142
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Newer Surveys: ALMA observation of
HD169142
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Full width at half maximum (FWHM)
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The Resulting Observations

¢ Unprecedented resolution to probe regions closer
to host star than ever before

¢ Principal DSHARP conclusions:

& Most common substructure are concentric bright
rings and dark gaps

& Spiral morphologies found in sub-set of disks

& Azimuthal asymmetries are rare in this sample

Image from Andrews et al. (2018)
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Causes of Ring Substructures

¢ Numerous simulations to replicate disk
structures

¢ Case Study: AS 209

¢ Unusual features:
¢ Number of rings
& Narrowness of rings
& Wide gaps in outer disk
& Possible processes to form rings:
& Snowline-induced gaps

& Pressure variations due to

magnetohydrodynamical (MHD) turbulent
disks

& Planet-disk interaction

10 au
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Image from Guzman et al. (2018)
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Causes of Ring Substructures

¢ Numerous simulations to replicate disk
structures

¢ Case Study: AS 209

¢ Unusual features:
¢ Number of rings
& Narrowness of rings

& Wide gaps in outer disk

& Possible processes to form rings:
Snowline-induced gaps

& Pressure variations due to

magnetohydrodynamical (MHD) turbulent
disks

& Planet-disk interaction
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Snowline Induced Gaps

& Rings due to changes in dust properties at location of snowlines for main ices:
& H,0, NH;, CO and N,
& Material is concentrated at condensation fronts
¢ um and mm size dust grains grow to cm size which are invisible at mm-wavelengths
& Support for this theory:
& Two outer gaps in disk near 60 and 100 AU have temperatures of 20 and 15 K
& Close to condensation temperatures of *2CO and N,
& Problems with this Theory:
& Observed gaps are too wide to be due to snowlines alone

& Only H,O line is efficient enough to produce these features
¢ Located at 2 AU - not resolved by DSHARP



Causes of Ring Substructures

¢ Numerous simulations to replicate disk
structures

¢ Case Study: AS 209

¢ Unusual features:
¢ Number of rings
& Narrowness of rings
& Wide gaps in outer disk
& Possible processes to form rings:

& Snowline-induced gaps : o
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Pressure variations due to | .
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& Planet-disk interaction

Image from Guzman et al. (2018)
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Rings due to MHD

& Possible processes:

Flux [Jy arcsec

¢ Zonal flows due to magnetorotational
instabilities

& Usually only produce variations of a few
tens of percent

¢ Dead-zone boundaries in midplane of
disk

& Doesn'’t fit well with widely separated multi
ring structure in outer disk

Dead-zone Edge
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& Not understood well enough to test

Image from Flock et al. (2015)



Magnetorotational instabilities (MRI)

Images from Birnstiel (2019)
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Deadzones

dead zone non-thermal ionization cosmic
of full disk column rays?

resistive quenching
of MRI, suppressed
angular momentum

o - transport _ -
collisional ionization at MR I-active ambipolar diffusion

T>10°K (r<1AU), surface layer dominates
MR turbulent

Image from Armitage (2011)
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Causes of Ring Substructures

¢ Numerous simulations to replicate disk
structures

¢ Case Study: AS 209

¢ Unusual features:
¢ Number of rings
& Narrowness of rings

& Wide gaps in outer disk

& Possible processes to form rings:
& Snowline-induced gaps

& Pressure variations due to

magnetohydrodynamical (MHD) turbulent
disks

Planet-disk interaction
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Rings due to Planet Interaction

& Depth of gap depends on several factors; mass of planet, time the planet has had to carve
gap, disk aspect ratio (h/r), disk viscosity

& Planets create gaps in process called “gap opening”

& Many different configurations could produce AS 209 features
¢ Fedele et al. (2018): 0.2 My, planet at 95 AU creates gap at 100 AU
& Also predicts feature within the gap

¢ Dong et al. (2018): ~0.1 My, planet at 80 AU creates gaps at 40, 60 and 100 AU

¢ Zhang et al. (2018): 0.087 My, planet at 99 AU creates various rings in inner 60 AU and outer
disk



Gap Opening

Video from Kley et al. (2012)



Rings due to Planet Interaction

& Depth of gap depends on several factors; mass of planet, time the planet has had to carve
gap, disk aspect ratio (h/r), disk viscosity

& Planets create rings in process called “gap opening”

& Many different configurations could produce AS 209 features
¢ Fedele et al. (2018): 0.2 My, planet at 95 AU creates gap at 100 AU
& Also predicts feature within the gap

¢ Dong et al. (2018): ~0.1 My, planet at 80 AU creates gaps at 40, 60 and 100 AU

¢ Zhang et al. (2018): 0.087 My, planet at 99 AU creates various rings in inner 60 AU and outer
disk



Zhang et al. (2018) Simulation
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The Resulting Observations

¢ Unprecedented resolution to probe regions closer
to host star than ever before

¢ Principal DSHARP conclusions:

& Most common substructure are concentric bright
rings and dark gaps

Spiral morphologies found in sub-set of disks

& Azimuthal asymmetries are rare in this sample

Image from Andrews et al. (2018)



Spiral Morphologies
& Observed spirals in five disks:
Elias 27
IM Lup
WaOph 6

HT Lup A
¢ AS 205N

® Three disks studied have two-fold rotational
symmetry

&
&
&
&

Due to multi-disk systems

& Possible origins for spiral structure:

¢ Planetary companions = trigger spiral density
waves

¢ Gravitational instability - more likely in younger
sources

¢ Shadowing from misaligned disk

& Stellar encounters

0.5 1.0 2.0 4.0

Images from Huang et al. (2018)



Conclusion

ALMA and the DSHARP survey offered astronomers a chance to see protoplanetary disks
with unprecedented resolution

Observations of protoplanetary disks are important tests for formation and evolution
theory

& Used to test stmulations

& Impose “time limits” for simulations (especially for planet formation)

& Increasing resolution in the future will help probe inner AU of protoplanetary disks

& Many steps in disk evolution are still unclear (ie. role of magnetic fields, dust growing

processes, timescales for planet formation)
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