FAKULTÄT für PHYSIK LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN/GARCHING

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN MÜNCHEN/GARCHING

MLL-KOLLOQUIUM

Donnerstag, 18.07.2019, 16¹⁵ Uhr

Hörsaal der LMU in Garching, Am Coulombwall 1 Treffen zum gemeinsamen Kaffee 16 Uhr

Dr. Kyohei Mukaida

(DESY, Hamburg)

Refining Calculations of WIMP Abundance

Astrophysical and cosmological observations from galactic to cosmological scales indicate the existence of dark matter. Nevertheless, most of its property still remain to be unknown and hence candidates range from 10^{-31} to 10^{50} GeV in its mass scale. Among them, the traditional dark matter candidate, so called WIMP (weakly interacting massive particle) is still attractive because its production mechanism, i.e., thermal freeze-out, naturally explains its abundance and pins down its mass scale to be $1 \sim 10^5$ GeV. Moreover, the same interaction required for the thermal freeze-out allows us to detect them directly/indirectly. The key observable for this program is the abundance of dark matter, which is one exceptional parameter we measured very precisely, i.e., within 1% accuracy. Hence, it is desirable to give theoretical prediction of WIMP abundance for a given model within this accuracy. Based on these, I will talk about my recent attempts to refine the calculation of WIMP abundance.

gez. Peter Thirolf Tel. 289-14064 gez. Norbert Kaiser Tel. 289-12367