FAKULTÄT für PHYSIK LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN/GARCHING

PHYSIK-DEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN MÜNCHEN/GARCHING

MLL-KOLLOQUIUM

Donnerstag, 05.07.2012, 16^{15} Uhr

Hörsaal der LMU in Garching, Am Coulombwall 1 Treffen zum gemeinsamen Kaffee 16 Uhr

Leticia Fimiani

TUM, Physik-Department E12, Garching

Searching for Supernova Debris on the Moon: ⁶⁰Fe and ⁵³Mn measurements in Lunar samples by means of Accelerator Mass Spectrometry (AMS)

The enhanced deposition of 60 Fe in a deep ocean ferro-manganese crust about (2.1 ± 0.4) Myr ago (Knie et al., PRL 93, 171103 (2004), Fitoussi et al., PRL 101, 121101 (2008)) indicate that one or more supernova (SN) explosions occurred in the vicinity of the Solar System. That observation was only possible with the ultrasensitive AMS technique at the MLL, where we are able to measure concentrations of 60 Fe/Fe down to a level of 10^{-16} .

Because of its lacking atmosphere and negligible sedimentation rate, the Lunar surface is an excellent quantitative reservoir for SN debris. We searched for live 60 Fe and 53 Mn in different samples from 3 Apollo missions. 53 Mn is, similar as 26 Al and 60 Fe, a tool to trace nucleosynthesis activities. It is formed primarily during the explosive silicon-burning of the inner shells of SNe via 53 Fe which β -decays to 53 Mn with an 8.51 min halflife.

Samples where we found an enhanced ⁶⁰Fe concentration showed also an enhancement of ⁵³Mn. If confirmed, this could be the first detection of live ⁵³Mn originating from nucleosynthesis.

In this talk, I will briefly describe the measuring technique and show the results of the measurements made so far. I will discuss in detail the possible origins of the measured concentrations.

gez. Peter Thirolf Tel. 289-14064 gez. Norbert Kaiser Tel. 289-12367